目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。
摘要:“量子材料”是指其性质“无法用半经典粒子和低级量子力学来描述”的材料,即晶格、电荷、自旋和轨道自由度紧密交织在一起的材料。尽管它们具有有趣而奇特的特性,但总体而言,它们似乎远离微系统的世界,即微纳集成设备,包括电子、光学、机械和生物组件。关于铁性材料,即具有铁磁和/或铁电序的功能材料,可能与其他自由度(如晶格变形和原子畸变)耦合,我们在这里讨论一个基本问题:“我们如何弥合专注于量子材料和微系统的基础学术研究之间的差距?”本文从半导体的成功故事出发,旨在设计一个路线图,以开发基于铁性量子材料的非常规计算的新技术平台。通过描述 GeTe 这一典型案例(新一类材料(铁电 Rashba 半导体)的父化合物),我们概述了如何通过从微观建模到设备应用的研究渠道,实现学术部门与工业部门之间的有效整合,将好奇心驱动的发现提升到 CMOS 兼容技术的水平。
摘要:铁是与几个细胞过程有关的必需金属离子。然而,铁的反应性使这种金属离子对细胞有潜在危险,并且需要严格控制其水平。铁的细胞内浓度的改变与不同的神经病理条件有关,包括与脑铁积累(NBIA)的神经变性有关。顾名思义,NBIA涵盖了一类稀有且仍未研究的神经退行性疾病,其特征是大脑中铁的异常积累。NBIA主要是一种遗传病理,迄今为止,有10个基因与NBIA的家族形式有关。在本综述中,在描述了与铁稳态有关的主要机制后,我们总结了有关NBIA遗传形式的病理机制的研究数据,并讨论了铁在此类过程中的潜在参与。出现的情况是,尽管铁超负荷可以有助于NBIA的发病机理,但它似乎并不是大多数病理形式的因果因素。这些病理的发作是由涉及脂质代谢,线粒体功能和自噬活性之间相互作用的过程的组合引起的,最终导致了铁染色质症。
什么是铁超载?当您体内铁过多时,就会发生铁超负荷。对于那些获得大量红细胞输血的人来说,这可能是一个问题。红细胞含有铁。每次收到红细胞输血时,您都会在体内添加更多的铁。您的身体没有一个很好的方法来摆脱从输血中获得的额外铁。这种铁可以在您的重要器官中积聚,并可能随着时间的推移伤害它们。本节帮助您了解铁超负荷以及如何治疗铁超负荷。还请访问我们的在线学习中心,以查看有关铁超载的网络广播。1。实际上是什么导致铁超载?随着每个红细胞输血,您的身体会收到更多的铁。随着红色细胞随时间而分解,血红蛋白中的铁被释放。您的身体没有自然的方法可以摆脱过多的铁,因此将额外的铁存储在身体组织中。这就是为什么接受输血的患者有铁超负荷的风险。您的身体通常最多存储3或4克铁。平均而言,一个人在输血期间会收到2个单位的血液,并且每个单位的血液都有200至250毫克的铁。因此,每2个单位输血都会为您的体内增加400至500毫克的铁。如果您每月获得2个单位的输血,则一年内将积累约5至6克(5000-6000毫克)的额外铁。您的身体不知道如何摆脱多余的铁。,但它确实知道如何存储它。一种称为转铁蛋白的蛋白质通过您的血液和储存的器官携带铁。制造新血细胞的额外铁通常存储在肝脏,脾和骨髓中。这种多余的铁可以导致其沉积器官受伤。过量铁可能会在这3个普通存储站点中积聚,也可能在其他通常不存储铁的器官中,例如:胰腺关节(尤其是手中)
