摘要。详细分析了使用平面和曲面光子微机电系统镜进行高斯光束的自由空间耦合。分析了理论背景和非理想效应,例如有限的微镜范围、球面微镜曲率不对称、轴未对准和微镜表面不规则。使用推导的公式从理论和实验上研究和比较平面(一维)、圆柱形(二维)和球面(三维)微镜的行为。分析重点关注曲面微镜曲率半径与入射光束瑞利范围相当的尺寸范围,也对应于参考光斑尺寸。考虑到可能的非理想性,推导出基于传输矩阵的场和功率耦合系数,用于一般微光学系统,其中考虑了微系统切向和矢状平面中的不同矩阵参数。结果以归一化量的形式呈现,因此研究结果具有普遍性,可应用于不同情况。此外,还制造了形状可控的硅微镜,并用于实验分析可见光和近红外波长的耦合效率。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.3.034001]
细化参数 闭合构象 开放构象 地图分辨率(掩蔽) 3.54Å 4.02Å 地图分辨率(未掩蔽) 3.55Å 4.03Å FSC(模型)(掩蔽)= 0.143 2.28Å 3.35Å 相关系数(掩蔽) 0.77 0.60 Ramachandran 允许值 100% 98.53% 表 2 PHENIX 40 中实空间细化的闭合和开放构象的冷冻电镜统计数据。447
摘要:提出了一种用于编码对相干显微镜中成像样品的复杂幅度场进行编码的通用方法,其中不需要对两个干涉梁中的任何一个限制。因此,成像梁通常可以与任何其他复杂振幅分布,尤其是考虑两个正交方向的任何其他复合幅度分布,尤其是自身的相干和移位版本。复杂的场值是通过一种新型基于Cepstrum的算法(称为空间移动Cepstrum(SSC))基于对象场频谱的互相关项的加权减法而被称为空间转移的CEPSTRUM(SSC),此外,除了从Holograper and Interviental的组合中,一项均具有一定的信息(一个范围)(一个范围)(一个范围)(一个范围)(一个范围),该效率是一份逐步播放的一部分(一个)。干涉梁移动1像素。结果,由于检索了该过程中涉及的三个干涉场的复杂幅度,因此视野的三倍。对此方法的概念验证验证,称为基于CEPSTRUM的干涉显微镜(CIM),考虑了考虑使用外轴全息构型,用于检索在紧凑的QUASIC-CASI-COMON-COMON-COMPOCT QUASIC-COMPONT QUASIC-COMPONT COMPLITACH PATER仪中的交叉相关性。包括不同类型的相样品的实验结果(包括分步校准和演示的分辨率测试目标以及固定的生物样本)。
Bray, F.、J. Ferlay、I. Soerjomataram、RL Siegel、LA Torre 和 A. Jemal。2018 年。2018 年全球癌症统计数据:GLOBOCAN 对 185 个国家/地区 36 种癌症的发病率和死亡率的估计。CA:面向临床医生的癌症杂志。68:394-424。Caselles, V.、R. Kimmel 和 G. Sapiro。1997 年。测地线活动轮廓。国际计算机视觉杂志 22:61-79。Chan, TF 和 LA Vese。2001 年。无边缘的活动轮廓。IEEE 图像处理学报。10:266-277。de Galiza Barbosa, F.、MA Queiroz、RF Nunes、LB Costa、EC Zaniboni、JFG Marin、GG Cerri 和 CA Buchpiguel。 2020. PSMA PET 成像中的非前列腺疾病:一系列良性和恶性发现。癌症成像。20:23。De Santis, M.、SM Breijo、P. Robinson、C. Capone、K. Pascoe、S. Van Sanden、M. Hashim、M. Trevisan、C. Daly、F. Reitsma、S. van Beekhuizen、H. Ruan、B. Heeg 和 E. Verzoni。2024. 对于 BRCA1/2 突变阳性转移性去势抵抗性前列腺癌患者,尼拉帕尼联合醋酸阿比特龙与其他一线聚 ADP-核糖聚合酶抑制剂治疗方案进行间接治疗比较的可行性。治疗进展。 Francini, E.、KP Gray、GK Shaw、CP Evan、AA Hamid、CE Perry、PW Kantoff、ME Taplin 和 CJ Sweeney。2019 年。新全身疗法对医院登记中转移性去势抵抗性前列腺癌患者总体生存率的影响。前列腺癌和前列腺疾病。22:420-427。Galletti, G.、K. Cleveland、A. Matov、JE Hayes、RJ Klein、DC Hassane、LV Nicacio 和 P. Giannakakou。2013 年。胃癌 (GC) 中紫杉烷敏感性的临床和临床前评估:GC 组织学的相关性。临床肿瘤学杂志。31:37-37。 Galletti, G.、K. Cleveland、C. Zhang、A. Gjyrezi、A. Matov、D. Betel、MA Shah 和 P. Giannakakou。 2014a.阐明胃癌内在紫杉烷耐药的分子基础。癌症研究。 74:897。 Galletti、G.、A. Matov、H. Beltran、J. Fontugne、J. Miguel Mosquera、C. Cheung、TY MacDonald、M. Sung、S. O'Toole、JG Kench、S. Suk Chae、D. Kimovski、ST Takawa、DM Nanus、MA Rubin、LG Horvath、P. Giannakakou 和 DS Rickman。 2014b. ERG 诱导去势抵抗性前列腺癌紫杉烷抵抗。纳特·康姆。 5:5548。 Gao, D., I. Vela, A. Sboner, PJ Iaquinta, WR Karthaus, A. Gopalan, C. Dowling, JN Wanjala, EA Undvall, VK Arora, J. Wongvipat, M. Kossai, S. Ramazanoglu, LP Barboza, W. Di, Z. Cao, QF Zhang, I. Sirota, L. Ran, TY MacDonald, H. Beltran, JM Mosquera, KA Touijer, PT Scardino, VP Laudone, KR Curtis, DE Rathkopf, MJ Morris, DC Danila, SF Slovin, SB Solomon, JA Eastham, P. Chi, B. Carver, MA Rubin, HI Scher, H. Clevers, CL Sawyers 和 Y. Chen. 2014. 源自晚期前列腺癌患者的类器官培养物. Cell. 159:176-187. Gleghorn, JP, ED Pratt, D. Denning, H. Liu, NH Bander, STTagawa、DM Nanus、PA Giannakakou 和 BJ Kirby。2010. 使用几何增强差异免疫捕获 (GEDI) 和前列腺特异性抗体从前列腺癌患者全血中捕获循环肿瘤细胞。Lab Chip。10:27-29。Hofman, MS、L. Emmett、S. Sandhu、A. Iravani、AM Joshua、JC Goh、DA Pattison、TH Tan、ID Kirkwood、S. Ng、RJ Francis、C. Gedye、NK Rutherford、A. Weickhardt、AM Scott、ST Lee、EM Kwan、AA Azad、S. Ramdave、AD Redfern、W. Macdonald、A. Guminski、E. Hsiao、W. Chua、P. Lin、AY Zhang、MM McJannett、MR Stockler、JA Violet、SG Williams、AJ Martin 和 ID Davis。 2021. [(177)Lu]Lu-PSMA-617 与卡巴他赛在转移性去势抵抗性前列腺癌患者中的疗效对比(TheraP):一项随机、开放标签、2 期试验。《柳叶刀》(英国伦敦)。397:797-804。
超分辨率显微镜已在纳米尺度分辨率下实现了成像。但是,在不引入可能误导数据解释的文物的情况下达到这种细节水平,需要在整个成像采集中保持样本稳定性。此过程的范围从几秒钟到几个小时,尤其是在将活细胞成像与超分辨率技术相结合时。在这里,我们基于实时跟踪效果标记的3 d主动样品稳定系统。为了确保广泛的可访问性,该系统是使用易于可用的避开功能的光学和光子组件设计的。此外,随附的软件是开源的,并用Python编写,促进了社区的采用和定制。,我们在侧面和轴向方向上在1 nm内实现样品运动的标准偏差,持续时间在小时范围内。我们的方法可以轻松地整合到现有的显微镜中,不仅使延长的超分辨率显微镜更容易访问,而且还可以使共同体和宽阔的现场活细胞成像实验跨小时甚至几天。
软X射线断层扫描(SXT)可以实现完全水合,低温保存的生物样品的三维(3D)成像,揭示了超微结构的细节,而无需染色,嵌入或切片。传统上仅在同步基因设施上可用,激光驱动的等离子源的最新进展导致了紧凑的软X射线显微镜(例如SXT-100)的发展。SXT-100将成像分辨率降低到54 nm全螺距,在30分钟到两个小时内获得了断层图。SXT-100与落叶显微镜整合在一起,通过桥接荧光和电子显微镜来促进相关工作流,同时保留玻璃化样品的结构完整性。我们通过各种用例演示了SXT-100的功能,包括成像Euglena Gracilis,酿酒酵母酵母细胞和哺乳动物细胞中的纳米颗粒。相对较短的断层图采集时间,软X射线断层扫描的几乎没有破坏性的性质以及其定量成像功能强调了其作为高级生物成像的强大工具的潜力。未来的发展有望增强吞吐量和更深入的整合,并与新兴的相关成像方式以及包括组织在内的各种样本类型。
背景:我们的MPM组装(在[1]中报告的详细信息)使用扫描,紧密焦点飞秒激光器(1,040和1,560 nm)来刺激样品中的非线性光学相互作用。这些相互作用发生在多个光子同时相互作用并激发电子,从而赋予其能量之和。当激发电子落回其基态时,单个光子被入射光子的能量之和发出[4]。在2光子相互作用中,发射的光子的能量是入射光子的第二阶谐波(即,频率/能量/能量或一半波长)。这发生在缺乏反转对称中心的晶体结构中的矿物质中。对于3光子相互作用,发射光子的能量相对于入射光子的三倍。这些相互作用会发生在激光焦点范围内的折射率变化时。在2-光子和3光子的相互作用中,如果将电子在激发态内刺激到更高的振动水平,则振动衰变损失了一定数量的能量,从而导致在较长波长下荧光发射。非线性
电气和计算机工程部,伍斯特理工学院,美国马萨诸塞州伍斯特市B Max Planck Inst。对于人类认知和脑科学,德国莱比锡c莱比锡应用科学大学(HTWK),工程学院,莱比锡,德国d d d div>计算神经刺激研究计划,无创神经调节单元,实验治疗和病理生理学分支,国家心理健康研究所,美国国立卫生研究院,贝塞斯达,马里兰州贝塞斯达,美国马里兰州Gathinoula A. Martinos Ctr。用于生物医学成像,马萨诸塞州综合医院,美国马萨诸塞州查尔斯敦,h伍斯特理工学院数学科学系,美国马萨诸塞州伍斯特,美国马萨诸塞州
图2。适应性的光学设置(A)照明系统(顶部)和管镜(底部)。灯由1 W白色的LED提供,该LED可以单独使用或带有磁连接的冷凝器。也可以添加RGB LED环以提供Darkfield照明。显微镜使用标准显微镜镜头,该镜头通过3D打印的管镜安装在覆盆子Pi HQ摄像机上。管镜包括一个光学双线,用于场校正。(b)使用40倍物镜镜头和不同的照明方式示例图像。tardigrade仅用LED(左上),冷凝器(右上角),Darkfield投影仪完全(左下)(左下)或一半的投影仪进行照明,或者是斜胶带的一半,以进行扩散(即克里斯蒂安森照明或伪动物;右下)。(c)使用带有和不带F50双重透镜的40倍物镜镜头获得的图像质量进行比较。没有冷凝器光(通常用于低放大倍数),不需要多余的镜头。使用冷凝器(右下角)时,可以实现图像质量的实质性提高。
了解细胞的复杂三维结构在生物学的许多学科中至关重要,尤其是在神经科学中。在这里,我们介绍了一组模型,包括3D变压器(Swinuneter)和一种新颖的3D自我监督学习方法(WNET3D),旨在解决生成3D地面真相数据和量化3D卷的核的固有复杂性。我们开发了一个名为CellSeg3d的Python软件包,该软件包在Jupyter笔记本和Napari GUI插件中提供了对这些模型的访问。认识到高质量的3D地面真相数据的稀缺性,我们创建了一个完全被人类宣传的中膜数据集,以提高该领域的评估和基准测试。为了评估模型性能,我们在四个不同的数据集中进行了测试:新开发的MesoSpim数据集,一个3D Platynereis-ish-Nuclei共聚焦数据集,一个单独的3D Platynereis-Nuclei灯光数据集,以及一个具有挑战性且具有挑战性和密集包装的Mouse-Skull-Nucleii colderii coldasaset。我们证明,我们的自我监管模型WNET3D(未经任何地面真相标签训练)以最先进的监督方法来实现绩效,为在标签式生物学环境中更广泛的应用铺平了道路。