传输使能输入。内部下拉。TXENABLE 有两个用途。在所有模式下,TXENABLE 必须为高电平,才能启用 DAC 的 DATA。当 TXENABLE 为低电平时,数字逻辑部分被强制为全 0,并且任何输入数据都被忽略。在交错数据模式下,TXENABLE 可用于将数据同步到通道 A 和 B。第一个 A 通道样本应与 TXENABLE 的上升沿对齐。
安全限制约束是绝对最大额定值表中指定的绝对最大结温。安装在应用硬件中的设备的功耗和结到空气热阻决定了结温。热特性表中假定的结到空气热阻是安装在 JESD51-3、引线表面贴装封装低有效热导率测试板中的设备的结到空气热阻,是保守的。功率是建议的最大输入电压乘以电流。结温是环境温度加上功率乘以结到空气热阻。
在 TI 的 29 年职业生涯中,Robert Baumann 发现 10B 与低能宇宙中子的反应是数字电子产品的主要可靠性风险,并制定了缓解方案,将产品故障率降低了近十倍。从 1993 年到 1998 年,他参与了 TI 在日本的 Mihomura Fab 和 Tsukuba 研发中心的晶体管和辐射效应可靠性以及高级故障分析。回到达拉斯后,他领导了先进技术可靠性小组的辐射效应项目。他共同领导了 SIA 的专家小组,该小组成功地与美国政府进行了谈判,修改了对先进商业技术构成严重出口限制风险的 ITAR 出口管制法。Baumann 是 JEDEC(JESD89、89A)行业标准的主要作者之一,该标准针对陆地环境辐射特性,并因此荣获 JEDEC 主席奖。2012 年,他转入高可靠性产品组,专注于改进辐射效应的特性、建模和报告。Baumann 当选为 TI 和 IEEE 院士。他合著并发表了 90 多篇论文和演讲、两本书的章节,并拥有 15 项美国专利。Baumann 于 2018 年从 TI 退休。
在 TI 的 29 年职业生涯中,Robert Baumann 发现 10B 与低能宇宙中子的反应是数字电子产品的主要可靠性风险,并制定了缓解方案,将产品故障率降低了近十倍。从 1993 年到 1998 年,他参与了 TI 在日本的 Mihomura Fab 和 Tsukuba 研发中心的晶体管和辐射效应可靠性以及高级故障分析。回到达拉斯后,他领导了先进技术可靠性小组的辐射效应项目。他共同领导了 SIA 的专家小组,该小组成功地与美国政府进行了谈判,修改了对先进商业技术构成严重出口限制风险的 ITAR 出口管制法。Baumann 是 JEDEC(JESD89、89A)行业标准的主要作者之一,该标准针对陆地环境辐射特性,并因此荣获 JEDEC 主席奖。2012 年,他转入高可靠性产品组,专注于改进辐射效应的特性、建模和报告。Baumann 当选为 TI 和 IEEE 院士。他合著并发表了 90 多篇论文和演讲、两本书的章节,并拥有 15 项美国专利。Baumann 于 2018 年从 TI 退休。
5.2.1 读取 LED 指示灯 5-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 使用状态字排除故障 5-8 . . . . . . . . . . . . . . . . 5.2.3.1 状态字一 (STW01) 5-8 . . . . . . . . . . . . . . . . . . . . . . 5.2.3.2 状态字二 (STW02) 5-9 ........................................................................................................................................................................................................ ........................................................................................................................................................ .................................................................................................................................................. ........................................................................................................................................................ 5.2.3.3 状态字六 (STW06) 5-10 ........................................................................................................................................................................................................................................................ ........................................................................................................................................................................ ........................................................................................................................................................ 5.2.3.4 状态字七至九(STW07–STW09)5-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3.5 状态字十(STW10)5-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 5.2.4 清除 PLC 致命错误 5-14 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 5.2.5 EPROM/EEPROM 故障排除 5-17 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 5.2.6 电源故障排除 5-18 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 5.2.7 备件 5-19 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ...
Space-EP 器件与标准目录产品相比具有以下优势:• 受控基线,一个晶圆厂、一个装配站点、一套材料。• 优化材料组,包括芯片连接、模塑化合物、引线框架和键合线,全部经过选择以最大程度提高可靠性。• 无高锡(>97% Sn)结构,包括端子(SnAgCu 焊球和 Matte-Sn 电镀)或内部封装组件(芯片凸块或基板电镀)。• 无铜键合线。产品采用倒装芯片安装(无键合线)或使用金键合线。• 额外的装配处理,包括 100% 温度循环或 100% 单程回流模拟代替温度循环。• 在目标温度范围(–55°C 至 +125°C)内进行特性分析。• 在室温和高温下均采用标准参数测试,并带有保护带以确保低温下的数据表限制。• 装配批次验收,包括 X 射线抽样和 CSAM 抽样。• 使用 MIL-PRF-38535 QML Class V 作为基线进行晶圆批次验收。
隔离是一种防止系统两部分之间出现直流和不受控制的交流电流,同时允许两部分之间进行信号和电力传输的方法。为了保护操作人员,防止高压系统中昂贵的处理器受损,断开通信网络中的接地环路,以及与高端设备通信,可能需要进行这种隔离。当希望在许多不同的系统应用中实现 SPI、UART、I2C、RS-485 和 RS-232 等接口的电流隔离时,数字隔离器是一种常见的选择,包括工业自动化系统、电机驱动器、医疗设备、太阳能逆变器、电源和混合动力电动汽车。本应用简介确定了为特定应用选择合适的数字隔离器时的关键考虑因素,并提供了了解德州仪器 (TI) 广泛的数字隔离器产品组合中的不同选择的指南。
隔离是一种防止系统两个部分之间出现直流和不受控制的交流电流的方法,同时允许这两个部分之间的信号和功率传输。这种隔离可能是必要的,以便保护操作员并防止高压系统中昂贵的处理器受损、断开通信网络中的接地环路以及与高端设备通信。数字隔离器是实现 SPI、UART、I2C、RS-485 和 RS-232 等接口的电流隔离的常见选择,适用于许多不同的系统应用,包括工业自动化系统、电机驱动器、医疗设备、太阳能逆变器、电源和混合动力汽车。本应用简介确定了为特定应用选择合适的数字隔离器时的关键考虑因素,并提供了了解德州仪器 (TI) 广泛的数字隔离器产品组合中的不同选择的指南。
4.5 PT,OT和ST服务的频率和持续时间标准。。。。。。。。。。。。。。。。。。。。。。.10 4.5.1高频。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 4.5.2中等频率。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 4.5.3低频。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 4.5.4维护水平 /防止恶化。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。11 4.5.5请求治疗服务。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11
简介 1915 年,福特汽车公司在其 T 型车上引入了电灯和电喇叭。从那时起,汽车对电气和电子系统的依赖性一直在稳步增加。最初的系统往往是本地和独立的。例如,控制前灯的开关直接连接到电池。然而,今天,这些系统都是相互连接的。当汽车的前灯打开时,仪表板照明、后视镜和其他系统都可能根据新情况进行调整。为了使其正常工作,各种不同的系统必须相互通信。随着汽车的发展,汽车内部用于实现这种通信的网络也在不断发展。随着自动驾驶汽车的不断发展,对车辆内部和车辆之间数据传输的需求将越来越大。本文研究了三种汽车通信标准——控制器局域网 (CAN) 总线、以太网和平板显示器链路 (FPD-Link)——并探讨了哪种接口最适合哪种系统。