助理教授EMİNE CANAN GÜNAY DEMİREL 个人信息 办公室电话:+90 286 218 0018 分机:1486 电子邮件:ecanan@comu.edu.tr 网址:https://avesis.comu.edu.tr/1049 国际研究人员 ID ORCID:0000-0003-2968-9780 Yoksis 研究人员 ID:180869 教育信息 博士学位,恰纳卡莱 Onsekiz Mart 大学,科学研究所,物理,土耳其 2003 - 2009 研究生,恰纳卡莱 Onsekiz Mart 大学,科学研究所,物理,土耳其 1999 - 2001 研究领域 电气和电子工程、能源、可再生能源、物理学、原子和分子物理学、跨学科物理学和相关科学技术领域、电子和磁性设备、微电子学、自然科学、工程和技术学术头衔/任务 助理教授,恰纳卡莱 Onsekiz Mart 大学,恰纳卡莱技术科学职业学校,电力和能源,2018 年至今 助理教授,恰纳卡莱 Onsekiz Mart 大学,恰纳卡莱技术科学职业学校,电力和能源,2012 - 2018 年 发表的期刊文章被 SCI、SSCI 和 AHCI 检索 I. 高维时空中夸克物质的域壁面解决方案 AKTAŞ C.、YILMAZ İ.、BAYKAL D.、ULU DOĞRU M.、GÜNAY DEMİREL EC AIP AdvAnces,第 899 卷,第 1 期,第 137-138 页,2007 年(SCI 扩展) 在其他期刊上发表的文章 I. 高维中的完美流体和标量场 Günay Demirel EC 国际建筑与工程杂志,第 3 卷,第 1 期,第 6-9 页,2023 年(同行评审期刊)II。根据 State Günay Demirel EC 对高维 FRW 模型中的暗能量进行分类,国际工程科学与应用杂志,第 5 卷,第 4 期,第 1-3 页,2022 年(同行评审杂志)III。利用替代能源的微控制器控制水果干燥系统
Prestwich 博士是植物抗病性、可持续农业和植物改良与转化替代方法领域的领先专家。Prestwich 博士在作物研究方面的长期经验与本提案和申请人的职业抱负完全吻合。她是生物地球与环境科学学院的首席研究员和植物科学系主任,目前教授 15 个本科生和 1 个研究生课程。她的研究兴趣包括:开发植物改良与转化替代方法 (CRISPR)、促进马铃薯系统的可持续发展以及在爱尔兰可持续植物生产中使用 CRISPR 技术。这些项目由欧洲的国家和国际机构资助。她是国际植物生物技术协会 60 年历史上第一位女主席。在她众多的研究成果中,她在马铃薯抗病方面的工作完美地补充了这个项目的目标。她在生物防治剂、促进植物生长的根瘤菌、微生物挥发性有机化合物 (mVOC) 方面的经验对本项目非常有价值,并将为进一步的资助提案提供机会。她在植物生物技术和分子生物学方面的经验与该项目特别相关,用于生产“非转基因”草莓植物。她超过 22 年的宝贵教学和研究经验将极大地有益于申请人的职业培训方面,并使她成为完美的导师。
固体聚合物电解质 (SPE) 有可能使锂离子和锂金属电池实现高能量密度、先进的制造能力和增强的安全性。然而,缺乏足够的分子尺度的锂离子传输机制见解和对关键相关性的可靠理解,往往会限制新材料的修改和设计范围。此外,对聚合物化学结构细微变化的敏感性(例如,选择特定的键或化学基团)通常被忽视为潜在的设计参数。在本次演讲中,我们将使用三个示例来展示原子分子动力学 (MD) 模拟如何补充实验研究并揭示聚合物结构变化与 Li+ 传输能力之间重要的分子尺度相关性。对于传统的 SPE,我们证明通过调整聚合物链的化学结构,可以实现从 Li+ 和聚合物链段运动状态之间的强耦合到解耦状态的转变。在单离子导电聚合物凝胶中,我们表明聚合物主链的微小修改显着增强了 Li+ 传输。最后,我们展示了 MD 模拟如何指导由聚轮烷超分子自组装组成的新型 SPE 的设计,其中编织线性链和环状分子的形态允许将 SPE 中的机械和传输特性解耦。
在人口增长和气候变化的背景下,消费量增加和农作物产量下降威胁着粮食安全。为了减轻这些威胁,可以采用植物基因工程来创造产量和营养价值更高、能够抵抗疾病和干旱等生物和非生物胁迫的作物。尽管基因组编辑领域最近取得了进展,但大多数植物物种仍然难以进行基因工程,因为植物细胞壁坚硬,尺寸排阻严格,这对生物分子向植物细胞的有效运输提出了挑战。目前将 DNA 输送到植物中的常用方法限制了可转化植物物种的范围,导致转基因整合不受控制,因此需要对编辑植物进行监管审查,将其视为转基因生物 (GMO),这个过程漫长而昂贵。因此,开发一种无致病性、非整合性、物种独立的输送工具将极大地推动农业生物技术的发展。在本次研讨会上,我将介绍一种纳米材料平台的开发,该平台可以高效地将基因输送到模型和农业相关作物植物中,无需机械辅助,以无毒、无整合的方式;这些特性的组合是现有植物转化方法无法实现的。我将讨论如何对单壁碳纳米管进行化学修饰,以装载和递送 DNA 到植物细胞中,从而在烟草、芝麻菜、小麦和棉花等各种植物物种中表达功能性蛋白质。在成熟植物中实现了质粒 DNA 的有效递送和瞬时表达,特别是没有将转基因整合到植物基因组中,这一特性可以减轻对转基因植物的监管监督。本次研讨会还阐明了纳米粒子穿过植物细胞壁的基本原理。我将讨论纳米粒子的物理化学特性(大小、形状、纵横比和硬度)对植物细胞吸收的影响,我们利用 DNA 纳米结构的易编程性系统地研究了这些影响。重要的是,确定最大植物细胞吸收的最佳纳米材料参数可以合理设计纳米材料。这些发展展示了纳米材料在解决植物基因工程的主要瓶颈方面的独特能力,以实现可持续的粮食安全未来。