由合格的遗传学家、遗传咨询师和/或接受过专门培训或具有遗传学专业知识的医生提供咨询。但是,由非遗传学医生发起的基因检测可能有助于改善及时和公平的获取。在这种情况下,开具处方的医生应该了解基于基因的管理指南。预测性检测(即在未受影响的个体中)、儿科人群中的检测、变异解释更新和扩展检测最好由具有遗传咨询和/或遗传性心肌病或遗传性心律失常专业知识的人员进行(对已知变异进行级联检测、对亲属进行意义不明确的变异检测、临床判断)。应鼓励跨学科途径和新的护理模式,以便及时和公平地进行临床评估和检测,遵循当地制定的结果披露和风险评估协议和流程。3) 家族中先证者的识别:在没有已知家族致病/可能的情况下
咖啡因是一种经常在不同食物和饮料中摄入的兴奋剂:咖啡、茶、巧克力、苏打水和能量饮料。虽然人们对其对心血管系统的影响进行了广泛的研究,但其潜在风险仍然存在争议,尤其是对心脏病患者。本综述全面概述了咖啡因的药理特性、来源和心血管作用,特别强调了其致心律失常的潜力。介绍了咖啡因的致心律失常潜力,特别是对心房颤动和心室心律失常的潜力。它解释了作用机制,包括腺苷受体拮抗作用、磷酸二酯酶抑制、钙动员和咖啡因的儿茶酚胺释放。提供了这两种情况的流行病学证据和机制见解,并解释了咖啡因消费的发生率、触发因素和对过早心室收缩的影响。它强调需要进行更多的研究来了解咖啡因摄入量和心血管健康之间的复杂关系,特别是在高危人群中。
心电图 (ECG) 用于测量心脏的电活动,是诊断慢性心血管疾病 (CVD) 和其他心脏异常(包括心律失常)的最重要工具之一。CVD 是世界范围内的主要死亡原因之一,因此拥有可靠、强大和高效的工具至关重要,可以尽快识别任何症状,以便尽早进行治疗。最近,人们对使用机器学习从各种设备收集连续记录以完全自动化 ECG 诊断程序产生了浓厚的兴趣。我们的初创公司 (MEDTL) 已经基于内部算法和其他创新的数字信号处理工程技术开发了一种最先进的 AI ECG 诊断解决方案。
视蛋白技术的新颖性可能成为社会逆境的潜在原因 尽管在技术、财务和社会方面存在某些限制,但我们的设备带来的好处仍然大于缺点。该设备的非侵入性使其能够解决 NHS 目前最紧迫的问题:资源匮乏。虽然这项技术仍需要大量研究,但一旦完全开发出来,它有可能解决传统起搏器中发现的各种医疗、技术和经济问题。 没有感染风险,因此提高了患者的安全性 由于该过程是非手术性的,因此对 NHS 的人力、资源和时间的需求较少 易于修复,因为对设备的任何损坏都是外部的,不像传统起搏器的导线断裂 内置的持续监控将信息发送到 NHS 数据库,从而可以更好地与临床医生建立联系
心律不齐,一种异常心律,是心脏病的最常见类型之一。心律不齐的自动检测和分类对于减少因心脏疾病而导致的死亡可能很重要。这项工作提出了使用单通道心电图(ECG)信号的多级心律失常检测算法。在这项工作中,使用心率变异性(HRV)以及形态学特征和小波系数特征可用于检测9种心律失常。统计,熵和基于能量的特征被提取并应用于基于机器学习的随机森林分类器。两项工作中使用的数据均取自4个广泛的数据库(CPSC和CPSC Extra,PTB-XL,G12EC和Chapman-Shaoxing和ningbo数据库),可用于Phancionet。具有HRV和时域形态特征,平均准确度为85.11%,敏感性为85.11%,精度为85.07%,F1得分为85.00%,而HRV和小波系数特征则获得了90.91%的精度,90.91%fivitivity,90.91%fivitivity,90.90%的速度和90%的精确度,90.96%和90%。对仿真结果的详细分析确认,所提出的方案有效地检测了单渠道心电图记录的心律不齐类别。在工作的最后一部分中,使用Raspberry Pi在硬件上实现了建议的分类方案,以实时ECG信号分类。
目前认为,心肌损伤可能是这些患者心律失常风险增强的主要原因。1 许多个体,尤其是重症患者都出现了心肌细胞损伤,其表现为肌钙蛋白水平升高。因此,据报道,肌钙蛋白 T 水平升高的患者室性心动过速/室性颤动的发生率更高。1 虽然心肌受累的机制仍在研究中,但可能包括直接的病毒感染、缺氧诱导的细胞凋亡和细胞因子风暴相关的细胞损伤(图)。1 然而,有证据表明,在重症监护病房患者中,尽管心律失常的发生率很高(约 50% 的病例),但只有一半出现急性心脏损伤(肌钙蛋白 I 水平中位数在正常范围内),这表明除心肌损伤外,其他因素也会导致 COVID-19 的心律失常风险增加。在这方面,人们越来越多地认识到药物治疗在增强对 QT 相关危及生命的室性心律失常,特别是尖端扭转型心动过速 (TdP) 的易感性方面的潜在作用。1 事实上,一些用于抵抗病毒入侵和复制的标明外用药可能会促进校正 QT 间期 (QTc) 延长。例如氯喹/羟氯喹,一种通过增加病毒/细胞融合所需的内体 pH 值来阻止感染的抗疟药,以及洛匹那韦/利托那韦,一种干扰病毒 RNA 复制的蛋白酶抑制剂。值得注意的是,在这两种情况下,对心室复极的影响都是直接的,通过抑制 hERG-K + 通道,也通过增加其他同时延长 QT 的药物的循环水平而间接产生。 1 事实上,氯喹和羟氯喹会抑制 CYP2D6(细胞色素 P450 2D6),该酶能代谢多种抗精神病药、抗抑郁药和抗组胺药,
心律失常性心肌病(ACM)是一种遗传性心肌病,其特征是通过纤维脂肪浸润和心肌细胞损失替换心肌。ACM易感性心律不齐的高风险。ACM最初被定义为一种脱染色体疾病,因为导致疾病的大多数已知变异涉及编码脱染色体蛋白的基因。研究这种病理是复杂的,特别是因为人类样本很少见,并且在可用时反映了该疾病最先进的阶段。通常的细胞和动物模型无法再现人类病理的所有标志。在过去十年中,已提出人类诱导的多能干细胞(HIPSC)作为创新的人类细胞模型。现在,HIPSC分化为心肌细胞(HIPSC-CM)现在已被良好控制,并且在许多实验室中广泛使用。该HIPSC-CM模型概括了病理学的关键特征,并为疾病的心肌细胞综合方法和筛查抗心律失常药物(AAD)有时在经验上为患者开了。在这方面,该模型为探索和开发新的治疗方法提供了独特的机会。HIPSC-CMS的使用无疑将有助于开发精密医学,以更好地治愈患有ACM的患者。
然而,随后的50年见证了对心律不齐机制及其生物分子基础4,5的增强的理解。这伴随着发现相当数量的其潜在膜离子通道和细胞内离子转运调节蛋白分子,以及它们在正常和心律不齐活性中的精确作用6。在过去的二十年中,合并证据的合并强烈表明,心脏的这种正常电功能是膜离子通道与细胞内离子转运调节蛋白分子之间动态和精心策划的相互作用的结果。这些见解都增强了我们对现有药物作用的药理机制的理解,并为药物开发提供了新颖的生理靶标。然而,临床实践可能并未从这些进步中受益。心律不齐仍然是一个主要的临床问题。他们的疗法在心脏病的许多其他领域经常落后。
摘要 - 心律不齐,也称为心律失常,是指不规则的心跳。有多种类型的心律失常可以源自心脏的不同区域,导致快速,缓慢或不规则的心跳。心电图(ECG)是用于检测心脏不规则和异常的重要诊断工具,使专家可以分析心脏的电信号,以识别复杂的模式和偏离标准的偏差。在过去的几十年中,已经进行了许多研究,以开发基于ECG数据对心跳进行分类的自动化方法。近年来,深度学习在应对各种医学挑战方面表现出了出色的功能,尤其是在变形金刚作为序列处理的模型架构中。通过利用变压器,我们开发了心电图数据中存在的各种心律不齐的分类的束缚模型。我们使用MIT-BIH和PTB数据集评估了建议的方法。ECG心跳心律失常分类结果表明,所提出的方法非常有效。ECG心跳心律失常分类结果表明,所提出的方法非常有效。