抽象背景超出观察到的细胞结构和线粒体的改变,将罕见的遗传突变与受脱敏突变影响的患者的心力衰竭发展联系在一起的机制尚不清楚,这是由于缺乏相关的人类心肌细胞模型。阐明线粒体在这些机制中的作用的方法,我们研究了源自人类诱导的多能干细胞的心肌细胞,这些干细胞带有杂合的DES E439K突变,这些干细胞是从患者中分离出来的,或者是由基因编辑产生的。为了提高生理相关性,在各向异性的微图案表面上培养心肌细胞以获得伸长和比对的心肌细胞,或者作为心脏球体,以创建微生物。在适用的情况下,通过突然死于携带DES E439K突变的家族的患者的心脏活检证实了心肌细胞的结果,并从五个对照健康的供体中验尸中的心脏样本。结果杂合DES E439K突变导致心肌细胞的总体细胞结构的巨大变化,包括细胞大小和形态。最重要的是,突变的心肌细胞显示出改变的线粒体结构,线粒体呼吸能力和代谢活性,让人联想到患者心脏组织中观察到的缺陷。最后,为了挑战病理机制,我们将正常的线粒体转移到突变体心肌细胞内,并证明这种治疗方法能够恢复心肌细胞的线粒体和收缩功能。结论这项工作突出了DES E439K突变的有害作用,证明了Mito-软骨异常在与Desmin相关心肌病的病理生理学中的关键作用,并为这种疾病打开了新的潜在治疗观点。
5 Invivosciences,Inc。,美国威斯康星州麦迪逊,对应作者:tetsuro@invivosciences.com,farid.alisafaei@njit.edu摘要。心肌细胞不断经历调节其收缩行为并有助于整体心脏功能的机械刺激。尽管机械转导的重要性在心脏生理学中,但心肌细胞整合外部机械提示的机制,例如拉伸和环境僵硬,仍然知之甚少。在这项研究中,我们提出了一个合并的理论和实验框架,以研究应变诱导的细胞骨架僵硬如何调节心肌细胞的收缩性和力产生。我们的研究阐明了调节组织中机械张力心肌细胞经验的经验(无论是通过调节环境僵硬,外部拉伸还是心脏成纤维细胞激活)可以有效地调节其收缩力,并通过细胞骨架菌株僵硬在这种机械转移反应中起着核心作用。
最初发表于:Gyöngyösi,Mariann; Alcaide,皮拉尔; Atselbergs,Folkert W; Brundel,Bianca J J M; Camici,Giovanni G;来自Paula的Costa Martins;费迪南迪,佩特; Fontana,Marianna; Girao,Henrique; Gnecchi,Massimiliano; Goldlmann-Tepeköylü,Can;彼得拉的克莱恩邦克里格(Krieg),托马斯(Thomas);麦当娜,罗莎琳达; Paillard,Melanie; Pantazis,Antonis;佩里诺(Perrino),Cinzia;鱼,毛里齐奥; Schiattarella,Gabriele G; Sluijter,Joost P G;斯特芬斯,萨宾; Tschöpe,Carsten;范·林特(Van Linthout),索菲(Sophie);戴维森,肖恩·M(2023)。长期的共同和心血管系统 - 阐明原因和细胞机制,以开发有针对性的诊断和治疗策略:ESC的心脏和心肌和心脏疾病细胞生物学的ESC工作组的联合科学陈述。心血管研究,119(2):336-356。doi:https://doi.org/10.1093/cvr/cvac115
1苏黎世大学苏黎世大学分子心脏病学中心,瑞士CH-8952,瓦格斯特拉斯12号; 2瑞士Lugano的Cardiocentro Ticino Institute,Cardiocentro Ticino Institute的细胞和分子心脏病学实验室;瑞士贝林佐纳EOC转化研究的3个实验室; 4瑞士苏黎世大学医院研究与教育系; 5意大利热那亚大学内科大学内科系内科第一个诊所; 6 Irccs Ospedale Policlinico San Martino Genova - 意大利热那亚的意大利心血管网络; 7瑞士苏黎世大学医院心脏病学大学心脏中心; 8瑞士日内瓦大学医学研究基金会心脏病学系; 9男子健康研究计划:老化和代谢,哈佛医学院,杨百翰和美国马萨诸塞州波士顿的妇女医院;瑞士洛桑大学洛桑大学医院心脏病学10;瑞士; 11心脏病学系,瑞士伯尔尼Inselspital Bern; 12号皇家布隆普顿和哈尔菲尔德医院,帝国学院和国王学院,伦敦,英国
摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。
“我们的实验室为该项目开发了一种定制的计算机辅助建模管道,该管道对肽的分子结构进行了建模,并与患病心脏细胞中预测的分子效应子相互作用。计算建模指导特定实验的设计研究分子机制。通过这种方式,计算机辅助建模的优势以及Ritterhoff博士和教授最有效地相互补充。”韦德教授说。
作者:劳拉·隆巴迪(Tenaya Therapeutics)Amara Greer-Short(Tenaya Therapeutics)Anna Greenwood(Tenaya Therapeutics)Elena Leon(Tenaya Therapeutics)Tawny Qureshi(Tenaya Therapeutics) Emilee Easter(Tenaya Therapeutics)Jin(Tenaya Therapeutics)Jaclyn Ho(Tenaya Therapeutics)Stephanie Stephanie(Tenaya Therapeutics)Marie Cho(Tenaya Therapeutics)Charles Feathers(Tenaya Therapautics)琼斯(Tenaya Therapeutics)Chris Alleyne-Levy(Tenaya Therapeutics)Jun Liu(Tenaya Therapeutics)Frank Jing(Tenaya Therapeutics)William Prince(Tenaya Therapeutics)Jianmin Lin(Tenaya Therapeutics) (Tenaya Therapeutics)疗法)
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
图1。家族性肌原纤维肌病和杂合DES E439K变体。(a)受影响家庭的血统。圈子和正方形分别代表女性和男性受试者。实心符号显示患有肌病和心肌病的患者。交叉的符号代表已故的受试者。+符号代表患者存在致病性杂合DES变体。固体箭头指示其心脏活检的家庭成员用于组织学和生化分析。空箭头指示其外周血单核细胞用于产生IPSC克隆的家庭成员。(b)索引病例CII的心脏样本的双脑室横向心脏切片(A)显示两个心室的扩张。(c)福尔马林固定左心室截面的苏木精蛋白safran染色显示广泛的纤维化。