摘要。我们介绍了一种机载中红外腔增强吸收光谱仪 (AMICA),它使用离轴积分腔输出光谱 (OA-ICOS) 在研究飞机上现场测量痕量气体。AM-ICA 包含两个很大程度上独立且可互换的 OA- ICOS 装置,允许同时测量不同红外波长窗口内的多种物质,以满足与特定飞行任务相关的科学问题。已经实施了三种 OA-ICOS 设置,目的是测量 2050 cm − 1 处的 OCS、CO 2 、CO 和 H 2 O;1034 cm − 1 处的 O 3 、NH 3 和 CO 2;以及 3331 cm − 1 处的 HCN、C 2 H 2 和 N 2 O。 2050 cm − 1 装置已在实验室中进行了表征,并在两次使用 M55 Geophysica 研究飞机和一次使用德国 HALO(高空远程研究飞机)的活动中成功用于大气测量。对于 OCS 和 CO,在典型的大气混合比下,已生成准确度为 5%(对于低于 60 ppb 的 CO,准确度为 15%,因为标准稀释会引入额外的不确定性)的科学数据,实验室测得的 1 σ 精度为 30 ppt(对于 OCS)和 3 ppb(对于 CO,时间分辨率为 0.5 Hz)。对于 CO 2,在大气混合比下的高吸收会导致饱和效应,从而限制灵敏度并使光谱分析复杂化,导致不确定性过大,无法用于科学用途。对于 H 2 O,吸收太弱而无法测量
除了历史和事实信息外,本演示文稿中所列出的事项以及我们的其他口头或书面陈述,诸如“估计”,“期望”,“预期”,“信仰”,“计划”,“预期”,“意图”,“意志”,“意志”和类似表达方式的表达方式以及类似的表达方式是由联邦证券法律定义的,并在此处构成了“安全”保护的范围。这些前瞻性陈述不能保证未来的结果,并且仅基于当前的期望,固有的投机性,并且受到许多假设,风险和不确定性的约束,其中许多是我们无法控制的。实际事件和结果可能与我们在这些陈述中的预期,估计,预测或暗示的事件可能有重大差异,如果这些风险或不确定性中的一个或多个存在,或者基本的假设证明不正确。您被告知不要过分依赖我们的前瞻性陈述,这些陈述仅在发表之日起说。我们没有义务出于任何原因公开更新或修改任何前瞻性陈述,无论是由于新信息,未来事件还是发展,情况,情况或其他情况。此外,关于我们的前瞻性陈述中包含的有关我们意图的任何信息都反映了我们的前瞻性陈述日期的意图,并且基于我们对监管,技术,工业,竞争,竞争,经济,经济和市场条件的评估。我们可能会随时改变我们的意图,策略或计划(包括我们的资本分配计划),恕不另行通知,基于此类因素或其他因素的任何变化。
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
在物理学中长期以来已经知道,当光被限制在很小的体积中时,可能会发生有趣的现象[1]。最著名的自发发射在腔中被光扩增,从而导致称为激光器的集体光子模式[2,3]。自从这一发现以来,对光腔的丰富研究传统已经发展出了一些开创性和基本发现。在当前的讨论中,特别有趣的是,光腔内的光线相互作用可以大大增强[4],因此,当物质被放置在光腔中时,双重光 - 亮点特征的准粒子可以形成,因此称为polaritons。已经产生了这些极化子的大量结果[5],并且仍在深入研究它们的形成和表征,并面临许多挑战。例如,在这一研究中,一个很大的里程碑是实现了极化玻色 - 因子凝结物[6,7]。最近开发的想法试图将焦点从极地转变为轻度驱动现象转向其形成对托管材料的作用。在一个称为极化化学的开创性领域中[8]光态状态用于增强和控制化学反应。形成极化子已通过改变势能格局来增强分子中的反应途径[9-14]。在没有实际光子的情况下。这种真空腔材料工程与通常广泛研究的集体效应和驱动(激发)偏振状态的凝结的情况形成鲜明对比。至关重要的是,在极化化学中表明,在强的耦合方案中,腔体中电磁场的真空波动可能会逐渐到电子结构的过渡,因此在黑暗腔中可以发生新的诱发现象,即类似地,与限制光子模式的空腔量子量子 - 电动力学耦合可以通过强烈耦合到真空波动的量子材料的性质进行更改。正式,根据自2010年初以来所做的工作,作为由欧洲研究委员会资助的两个主要项目的一部分(Dynamo 5和
钢铁行业需要大大减少温室气体(GHG)的排放,因为它被认为是全球温室气体排放的主要工业贡献者之一。由于CO和CO 2以高浓度出现在钢铁磨机气体中,因此可能选择的一种是利用CO和CO 2来生产增值化学品。遵循此目标,开发了一种碳捕获和利用(CCU)技术,将CO和CO 2从钢厂的爆炸炉气(BFG)转换为多元醇的构建块。然后使用这些多元醇生产聚氨酯(PUR),用于制造涂料和刚性泡沫以用于绝缘板。用于评估和比较该新型CCU系统与现有钢和多元醇系统的生命周期环境影响,前Aante生命周期评估(LCA)。将CCU系统的三种可能方案与现有钢和多元醇系统进行了比较,该系统通过执行LCA和识别热点进行评估。与现有技术相比,CCU技术的所有三种情况均表现出改善的环境性能,尽管碳足迹最大减少了约10%。用于生产CCU多元醇的能量和化学物质被确定为所有三种情况生命周期影响的主要热点。
基于空腔的X射线自由电子激光器(CBXFEL)是完全相干X射线源开发的未来方向。cbxfels由一个低射精的电子源,一个带有几个失调器和chicanes的磁铁系统以及一个X射线腔。X射线腔存储并循环X射线脉冲,以与电子脉冲重复相互作用,直到FEL达到饱和。CBXFEL腔需要低损坏波前的光学组件:接近100%的反射性X射线钻石钻石bragg反射晶体,远对偶联设备,例如薄钻石膜或X射线膜,以及无X射线光栅,以及不含焦点的聚焦元素。在Argonne国家实验室,SLAC国家加速器实验室和Spring-8的协作CBXFEL研究与开发项目的框架中,我们在这里报告了CBXFEL腔的X射线光学组件的设计,制造和表征,包括高度反射性的钻石晶体液体,包括钻石晶体的薄膜和薄膜液体,包括imondivelivity单色。所有设计的光学组件都在高级光子源上进行了充分表征,以证明其对CBXFEL腔应用的西装。
*通讯作者。1 Max Planck物质结构和动态研究所,德国汉堡。2物理系,哥伦比亚大学,美国纽约,美国。 3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。 4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。 5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。 6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。 7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。 8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。2物理系,哥伦比亚大学,美国纽约,美国。3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。法国德国大学学院10大学。
我们生活在一个痴迷于成就、资历和地位的社会,因此,当得知一些家长和学生愿意牺牲自己的诚信来进入不同的学校和大学时,你会感到震惊吗?学生们认为,大学的准备和选拔过程是他们高中时期遇到的最有压力的事件之一。毫不奇怪,这种压力已被证明会导致身体和心理健康问题。丹尼斯·波普博士为加州斯坦福大学的挑战成功计划进行的研究表明,学生在大学里做什么以及他们参与活动的程度比他们上哪所大学更重要。此外,许多研究表明,学生在学校的参与度与他们以后在所选职业中的幸福感之间存在密切的联系。波普列举了几个与以后在工作场所的满足感相关的领域的参与度。这些领域包括参加课外活动、体验式学习、在几个学期内从事项目以及由关心和/或使学习变得有趣的教授讲授的课程。在诺瓦东南大学的 Kiran C. Patel 博士骨科医学院,我们将学术卓越和以学生为中心作为我们的核心价值观的首要任务。无论是本科、研究生还是 DO 课程,我们的课程重点都是创造一个让学生能够体验上述领域的环境。如果知道这种相关性,是否会改变家长对最近全国招生丑闻的参与?这会改变学生觉得有必要在学校作弊以成为所选职业道路的有竞争力的候选人这一事实吗?最近的招生丑闻是否只是冰山一角,其深度是否代表着“目的可以不择手段”的心态?