年轻时被诊断出患有2型糖尿病(T2D)的人正在增加,并且患心血管疾病的风险升高(CVD)(1)。先前的研究表明,诊断时糖尿病亚组除以年龄的差异表现出遗传危险因素的差异(2),并且患有早发T2D的糖尿病差异具有较高的T2D多基因风险评分(PRS)(3)。然而,与T2D诊断时与年龄相关的遗传异质性是否会影响过多的CVD风险仍然很大未知。与常见的土壤假设一致(4),我们假设在早发糖尿病患者中对CVD的遗传易感性增加。我们分析了来自两个前瞻性共同体的数据,以调查对较早的T2D诊断对事件CVD的遗传影响增加。此外,由于建议一种健康的生活方式来抵消CVD的遗传风险增加(5,6),因此我们探索了通过T2D诊断时的年龄通过健康的生活方式层次来修改对CVD的遗传影响。
卫生研究所卡洛斯三世(IDIBAPS),巴塞罗那,巴塞罗那,巴塞罗那,巴塞罗那,巴塞罗那,巴塞罗那。西班牙,卫生研究院卡洛斯三世,巴塞罗那,西班牙,西班牙,西班牙,维克,西班牙,8年卫生保健南拉瓦尔中心。
心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
心血管疾病(CVD)是影响心脏和/或血管的疾病簇,是全球死亡和残疾的最大原因。在2019年,据估计,1,790万死亡归因于CVD,这是全球死亡的第一个主要原因(1)。CVD具有复杂的病因,并且在明显的症状事件发生前经常发展数十年。早期干预对于降低CVD的发病率和死亡率至关重要,这将对公共卫生负担产生深远的影响。因此,对不同危险因素的因果效应(尤其是在微观和分子水平上)的因果关系的改进,可以重新预防策略,并为CVD的治疗干预提供新的靶标。细胞因子在调节炎症反应,改变血管收缩和阻碍内皮依赖的血管舒张方面起关键部分,因此,它们可能提供预防CVD的潜在靶标(2)。广泛的流行病学证据已经证明了细胞因子与CVD之间的密切关联。例如,一项包含29个队列研究的荟萃分析表明,几种细胞因子,例如白介素6(IL-6),IL-18和肿瘤坏死因子α(TNF-a),每种都与发展冠状动脉疾病(CAD)的风险(CAD)相关,在近似log-log-log-fistry-lorig-dipplist fivestion危险中,传统的风险是独立于传统的(3)。另一项涉及17,180名个体的研究发现,单核细胞趋化蛋白1(MCP-1)的循环水平与中风长期风险的正相关(4)。然而,经典的观察设计容易逆转因果关系,并混淆了促进因果的推论,并且对细胞因子干预进行临床试验具有挑战性。Mendelian随机化(MR)是一项可靠的技术,可以解决上述观察性研究伴随的局限性,并通过将遗传变异作为工具变量(IVS)提供了最高水平的证据层次结构(5)。此方法,当满足某些假设时,可以确定
结果:在完全调整混杂变量的多元逻辑回归中,我们的分析显示 TyG、TyG-BMI、TyG-WC 和 TyG-WHtR 与胸痛之间存在显著关联,调整后的 OR (95% CI) 分别为 1.21(1.05, 1.39)、1.06(1.01, 1.11)、1.08(1.04, 1.14)和 1.27(1.08, 1.48)。对于总 CVD,调整后的 OR 值(95% CI)分别为 1.32(1.08, 1.61)、1.10(1.03, 1.17)、1.13(1.06, 1.19)和 1.63(1.35, 1.97),其中 TyG、TyG-WC 和 TyG-WHtR 在 RCS 分析中呈现曲线关联(所有 P 非线性 < 0.05)。此外,ROC 曲线显示 TyG-WC 对总 CVD、冠心病 (CHD) 和心肌梗死 (MI) 具有最稳健的预测效能,而 TyG-WHtR 对心绞痛和心力衰竭具有最好的预测能力。
由于来自遗传或基因组评估的信息是复杂的,并且随着时间的流逝而变化,因此经常在接受测试之前和之后咨询临床遗传学家。遗传咨询将帮助患有遗传疾病的患者或家庭了解测试的需求,局限性和收益,以及家庭内发生的疾病,风险和频率的性质,模式和性质,以及在家庭计划中做出明智决定的预防手段。心脏病专家可以进行其他检查以评估病情,安排检查以确认诊断以制定最佳治疗计划。
1。北京大学基础医学科学学院生理学和病理生理学系;血管稳态和改造的国家主要实验室,中国北京100191。2。人类解剖学,组织学和胚胎学系的癌症和细胞生物学计划,基础医学科学学院,北京大学健康科学中心,北京100191,中国。3。北京蛋白质翻译后修饰和细胞功能的北京关键实验室生物化学和分子生物学系,基础医学科学学院,北京北京北京北京100191的北京大学健康科学中心基础医学科学学院。4。CAS关键实验室在上海营养与健康研究所,上海生物科学研究所,中国科学院上海研究所,中国上海200031,中国。5。药物生物技术的国家主要实验室,MOE疾病模型动物研究的主要实验室,模型动物研究中心和江苏分子医学的主要分子医学实验室,南京大学医学院,中国南京210093,中国。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
COVID-19大流行强调了对创新疫苗技术和治疗学的关键需求。分子胶水促进蛋白质蛋白质相互作用的小分子对其在疫苗制剂,癌症药物发育和心血管疾病治疗中的潜在应用引起了重大兴趣。这项全面的综述探讨了疫苗技术的多种景观,从mRNA和蛋白质亚基疫苗到病毒载体和基于核酸的疫苗,并阐明了分子胶水可以提高其效率。此外,它深入研究了癌症药物发育和心血管疾病疗法的新兴领域,强调了分子胶在靶向涉及这些疾病的蛋白质蛋白质相互作用中的作用。通过检查基于分子胶的方法的分子机制,最新进步以及未来的前景,这篇综述提供了对它们在打击感染性疾病,癌症和心血管疾病中的变革潜力的透彻理解。