志贺氏菌是继轮状病毒之后,五岁以下儿童中第二大致命性腹泻病,在发展中国家发病率和死亡率都很高。目前,尚无广泛使用的疫苗,而且多药耐药性水平的不断提高使得志贺氏菌成为疫苗开发的重中之重。使用 GMMA 技术开发的针对宋内志贺氏菌 (1790GAHB) 的单组分候选疫苗含有脂多糖 (LPS) 的 O 抗原 (OAg) 部分作为活性部分。该疫苗在早期临床试验中耐受性良好且具有免疫原性。在法国的一项 1 期安慰剂对照剂量递增试验 (NCT02017899) 中,健康成人接种了三剂五种不同疫苗制剂(0.06/1、0.3/5、1.5/25、3/50、6/100 µg OAg/蛋白质)。在原研究之后 2 - 3 年进行的 1 期扩展试验 (NCT03089879) 中,在初次接种系列之前抗体水平无法检测到的已接种过疫苗的个体接受了 1790GAHB 加强剂量 (1.5/25 µg OAg/蛋白质)。对照组是接种了一剂 1790GAHB 的未接种过疫苗的参与者。当前的分析使用针对检测人血清优化的高通量发光血清杀菌活性 (SBA) 检测法评估了从两项研究中收集的血清的功能性。在接种疫苗者中检测到了具有补体介导的杀菌活性的抗体,但在安慰剂接受者中未检测到。SBA 滴度随着 OAg 剂量的增加而增加,在初次接种至少 1.5/25 µg OAg/蛋白质后,反应持续长达六个月。加强剂量在大多数已接种过疫苗的参与者中诱导了 SBA 滴度的大幅增加。观察到 SBA 滴度与抗 S. sonnei LPS 血清免疫球蛋白 G 水平之间的相关性。结果表明,GMMA 是一种有前途的 OAg 递送系统,可用于产生功能性抗体反应和持久的免疫记忆。
不幸的是,并非所有疾病都可以通过有效的疫苗预防。例如,人类免疫缺陷病毒 (HIV) 疫苗已经研发了近 40 年,但未能成功。此外,结核病、链球菌 A、血吸虫病、恰加斯病、尼帕病、拉沙病、中东呼吸综合征、寨卡病毒、丙型肝炎、淋病、鼠疫(耶尔森氏菌)、沙门氏菌、志贺氏菌、大肠杆菌、肺炎克雷伯氏菌、衣原体、柯萨奇病毒、诺如病毒、基孔肯雅热、CMV、HSV-2、EBV 和其他对人类造成重大负担的传染病仍然没有疫苗。如今,生物技术公司继续寻找创新方法来引发对这些传染性病原体的持久免疫反应。本报告概述了生物制药公司开发的最先进、新颖的候选药物。6
4 cfu/g,最低为 1.9 x 10 -4 cfu/g,而平均值为 4.09 x 10 4。使用标准微生物程序对分离物进行鉴定和表征。最常见的细菌是金黄色葡萄球菌(26%),霍乱弧菌(22%),志贺氏菌(13%),而最少的是沙门氏菌(9%)。革兰氏阳性菌(金黄色葡萄球菌)对环丙沙星(100%)和氧氟沙星(100%)高度敏感,但对氨苄西林(100%)高度耐药。革兰氏阴性病原体(大肠杆菌、霍乱弧菌和志贺氏菌)对培氧氟沙星(100%)和氧氟沙星(100%)高度敏感。它还显示出对阿莫西林(100%)、氯霉素(100%)、庆大霉素(100%)、呋喃妥因(100%)的高耐药性。本研究中抗生素耐药菌的高流行率是一个严重问题,因为大肠杆菌、金黄色葡萄球菌、沙门氏菌、霍乱弧菌和志贺氏菌的耐药模式会对人类健康产生影响,从而建议鱼类加工商和销售商应改善处理卫生状况,消费者也应妥善处理鱼类,以尽量减少可能的健康危害。DOI:https://dx.doi.org/10.4314/jasem.v28i12.26 许可证:CC-BY-4.0 开放获取政策:JASEM 发布的所有文章均为开放获取文章,任何人都可以免费下载、复制、重新分发、转发、翻译和阅读。版权政策:© 2024。作者保留版权并授予 JASEM 首次出版权。本文的任何部分均可未经许可重复使用,但必须引用原始文章。引用本文为:NWUZO,AC;IGWE,PC;OKPOKWU,UA;ANIOKETE,UC;NOMEH,OL;NWOJIJI,EC;CHUKWUEMEKA–ODI,LO;UGWU,J;NWADUM,EF;AGBOM,JN;NWOKPORO,NR(2024)。对尼日利亚埃邦伊州阿巴卡利基水产养殖鱼细菌污染及其公共卫生影响的评估。应用科学环境管理杂志 28 (12) 4153-4160 日期:收到日期:2024 年 9 月 18 日;修订日期:2024 年 10 月 20 日;接受日期:2024 年 11 月 5 日;出版日期:2024 年 11 月 15 日 关键词=抗生素耐药性;公共卫生影响;水产养殖;细菌学;人类 在过去的 35 年里,尼日利亚的水产养殖产量每年增长 12%,从 1980 年的 6,000 吨增加到 2016 年的约 307,000 吨(Worldfish,2018 年)。尼日利亚是最大的鱼类养殖国
摘要。收音机和手机使用振荡载体信号的频率调制(FM)来可靠地传输多路复用数据,同时拒绝噪声。在这里,我们使用遗传编码的蛋白振荡器(GEOS)作为电路中的载波信号来建立该范式的生化类似物,以实现单细胞数据的连续实时FM流。GEOS是由进化多样的思想家庭ATPase和激活因子模块构建的,这些模块在人类细胞中共表达时会产生快速的合成蛋白振荡。这些振荡用作单细胞载体信号,频率和振幅由GEO组件水平和活动控制。我们系统地表征了169个ATPase/Activator Geo对和具有多个竞争激活剂的工程师复合GEO,以开发一个用于波形编程的全面平台。使用这些原理,我们设计了对细胞活性调节地理频率的电路,并使用校准的机器学习模型解码其响应,以证明单个单元中转录和蛋白酶体降解动力学的敏感,实时FM流。GEOS建立一个动态控制的生化载体信号,解锁抗噪声的FM数据编码范式,为动态单细胞分析开辟了新的途径。简介。细胞动态调节不同时间尺度的基因表达,蛋白质定位和信号传导状态,以执行必不可少的生物学功能1-4。虽然基因组,转录组和蛋白质组学方法可以提供单细胞态5-8的快照,但实时遵循单个细胞的轨迹的能力对于理解动态细胞和生物体行为如何编码和功能1,9,10至关重要。这些单细胞动力学通常是使用荧光记者在显微镜下进行跟踪的,其强度或定位为您感兴趣的数据提供了代理10-16。虽然功能强大,但这些工具对扩展单细胞动力学和数据聚合的扩展跟踪构成了挑战,因为任意信号强度在仪器上各不相同,并且对光漂白和噪声17敏感。此外,传统基于荧光的工具生成的信号缺少元数据来识别信号的基本细胞来源,从而使密集的细胞环境中重叠信号的分离变得困难。
1。预期的用途检测和分离革兰氏阴性肠病原体,尤其是人类临床标本和其他标本中的志贺氏菌和沙门氏菌。革兰氏阴性肠病原体(尤其是志贺氏菌和沙门氏菌)的Shalmella shigella琼脂/XLD琼脂。沙门氏菌琼脂/XLD琼脂的功能是支持症状患者的诊断,表明革兰氏阴性肠病原体,尤其是Shigella属和沙门氏菌的病原体潜在感染。沙门氏菌是食物中毒的一些最常见的病因。这些微生物的致病性从一种血清变化到另一种血清,并且在同一亚种中可能会有所不同。一些血清造成了侵入性疾病,但也有一些造成自限性食物中毒的血清疾病。沙门氏菌肠subsp的最孤立的血清。肠道是S. enteritidis,S。Typhimurium,S。Virchow,S。Hadar或S. iftantis。Shigella属包括四种:S。dysenteriae,s。Flexneri,S。Boydii和S. Sonnei。所有物种都是强制性的病原体,并引起细菌痢疾。2。手术沙门氏菌琼脂的原理胆汁盐,孔雀石绿色和柠檬酸钠的存在抑制了除沙门氏菌和志贺氏菌以外的革兰氏阳性微生物和肠杆菌的生长。由于添加乳糖,肠杆菌的分化是可能的。乳糖发酵细菌会产生酸并形成红色菌落,这是由于中性红色的pH指示剂。相反,乳糖非发酵微生物形成无色菌落。柠檬酸铁是硫化氢产生的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合,形成H 2 S,与柠檬酸铵反应。这种反应导致形成沉淀物,可见在细菌菌落中心的黑点。XLD琼脂酵母提取物是培养基中养分的来源。脱氧胆酸钠的存在抑制了革兰氏阳性细菌的生长。由于三个指示系统,细菌的分化是可能的: - 乳糖,木糖和蔗糖与苯酚红(这是pH指示剂) - - 盐酸l-赖氨酸盐和苯酚红色, - 硫代硫酸钠和柠檬酸铁硫酸盐。木糖的发酵降低了培养基的pH值,并使其从红色变为黄色。包括沙门氏菌在内的大多数肠道病原体能够发酵木糖,从而导致培养基的酸化。由于志贺氏菌的细菌是乳糖的非发酵,因此不会产生酸,因此会形成红色菌落。赖氨酸允许将沙门氏菌细菌与其他非致病细菌区分开。一旦木糖耗尽,沙门氏菌细菌在脱羧过程中利用L-赖氨酸,这将培养基的pH水平改变为碱。为防止赖氨酸阳性大肠菌群,乳糖和蔗糖的类似pH水平的类似回归,以产生多余的酸。氯化钠保持渗透平衡。柠檬酸铵是硫化氢生产的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合形成H 2 s,与柠檬酸铁反应形成沉淀物,可见在细菌菌落中的黑色中心。产生H 2 S的非致病细菌不脱羧L-赖氨酸。因此,它们产生的酸反应阻止了菌落的变化。
氨苄西林* 类别:β-内酰胺 概述 氨苄西林,俗称广谱青霉素,是一种氨基青霉素,是一类半合成的 β-内酰胺,专门用于对抗革兰氏阴性菌和革兰氏阳性菌。氨基青霉素是通过将青霉素与氨基或侧链连接而生成的。添加侧链会显著改变药物对某些细菌的活性。最初,这些抗菌药物对奇异变形杆菌、大肠杆菌、志贺氏菌、沙门氏菌、嗜血杆菌和奈瑟菌有效。然而由于易感性的变化,氨苄西林不再是治疗这些菌感染(如大肠杆菌尿路感染)的首选药物,除非培养和药敏结果表明易感。氨苄西林的作用机制是通过附着于青霉素结合蛋白 (PBP) 来干扰细胞壁合成,抑制细胞壁肽聚糖合成和使自溶酶抑制剂失活。耐药性 氨苄西林通常也被 β-内酰胺酶灭活(有关获得对 β-内酰胺的耐药性的信息,请参阅青霉素部分。)。近年来,屎肠球菌和肺炎链球菌开始通过突变表现出低亲和力 PBP,这是对氨基青霉素的耐药机制。有效性 氨苄西林和阿莫西林具有相同的活性谱,尽管阿莫西林的特点是生物利用度更高。对氨苄西林和阿莫西林普遍敏感的菌属包括葡萄球菌、链球菌、棒状杆菌、梭状芽孢杆菌、大肠杆菌、克雷伯氏菌、志贺氏菌、沙门氏菌、变形杆菌和巴氏杆菌,尽管其中许多细菌已获得耐药性。氨苄西林通常用于治疗革兰氏阴性肠道细菌引起的泌尿道感染。该药物还用于治疗呼吸道感染。此外,氨苄西林对 B 组链球菌均有效,但对肠杆菌、流感嗜血杆菌、假单胞菌和吲哚阳性变形杆菌感染无效。有关体液和脑脊液吸收的解释,请参阅青霉素部分。 *可根据要求提供参考资料。致电路易斯安那州卫生与医院部公共卫生办公室传染病流行病学科 (504-219-4563)