放射疗法是癌症治疗的重要组成部分,大约50%的癌症患者在疾病过程中接受了放射治疗。尽管如此,实体瘤经常表现出低氧区域,这可能会阻碍疗效,尤其是放射治疗。的确,缺氧会影响控制放疗反应的六个参数,称为“六r辐射生物学”(用于放射敏感性,修复,重新分配,重新分布,重新分布,重氧和反肿瘤免疫反应的重新激活),通过诱导Pleopropic细胞适应性,例如REMED EPER EPER EPER EPER EPER EPER EPER EPER,EPER EPER EPER,EPER EPER,EPER,EPER,EPER,EPER,EPER,EPER,EPER综合综合综合综合综合综合综合综合综合综合综合综合综合症,以弥补疾病综合综合综合综合综合综合综合综合综合综合综合综合综合综合综合症,细胞死亡减弱,并具有显着的临床影响。在这篇综述中,根据六个RS,我们详细介绍了缺氧以及相关的机制和途径如何影响实体瘤的放射疗法反应以及由此产生的临床意义。我们通过关注甲状腺甲状腺癌的焦点在低氧内分泌癌中表达了它。
Alexandre Sitbon,Pierre-Romain Delmotte,Claire Goumard,CéliaTurco,JérémieGautheron等。间充质基质细胞衍生的细胞外囊泡在肝衰竭和边缘肝移植康复中的治疗潜力:范围审查。Minerva Anestesiologica,2023,89(7-8),10.23736/S0375-9393.23.17265-8。hal-04385821
冠心病(CHD)仍然是发病率和死亡率的主要原因。有许多治疗性再灌注方法,包括溶栓疗法,原发性经皮冠状动脉介入干预以及抗复制药物,例如血管紧张素转化酶抑制剂和β-阻滞剂。尽管如此,没有药理学治疗可以有效地阻止心肌障碍/再灌注(I/R)损伤带来的心肌细胞死亡。为了再生心脏组织,间充质干细胞(MSC)治疗最近引起了更多关注。MSC的多效效应是通过可溶性旁分泌因子的分泌而仲裁的,并且与它们的分化能力无关。这些旁分泌介质之一是被称为外泌体的细胞外囊泡。外泌体从MSC,包括肽,蛋白质,细胞因子,脂质,miRNA和mRNA分子的受体细胞提供有用的货物。外泌体参与细胞间通信过程,并帮助受伤或病情不良的组织和器官。根据研究,发现单独的外泌体是MSC在多种动物模型中的治疗作用的原因。在这里,我们专注于心脏病外泌体MSC的治疗能力的最新发展。关键词:间充质干细胞(MSC),外泌体,心脏病,治疗,再生
激光雷达图像 – 从简单快照到移动 3D 全景图 ALLAN I. CARSWELL,安大略省旺市 摘要 激光雷达图像现在为越来越多的应用提供了独特的 3D 成像功能。激光雷达广泛用于测量固体表面的位置、形状和结构,用于勘测、测绘、定位和车辆导航。激光雷达还能进行水下海洋和水文测量,以进行水深测量、水质研究和水下资源识别。此类激光雷达可在机载、水面和水下平台上操作。激光雷达也已成为越来越多大气测量的首选传感器,包括气象和空气质量研究。此外,激光雷达成像已用于各种空间应用,包括行星探索以及航天器着陆、对接和会合。本文概述了这些应用的亮点以及未来的趋势和方向。
摘要:本文对时尚零售品牌Zara进行了深入分析,详细介绍了其品牌背景、历史和主要特征。Zara是Inditex集团旗下的品牌,以快速响应市场趋势和提供优质时尚的服装产品而闻名。本文探讨了Zara如何以其独特的品牌定位对全球时尚界产生了重大影响。此外,本文还深入探讨了Zara的市场定位以及通过快时尚模式在全球时尚市场中脱颖而出的策略。重点研究了Zara的供应链管理、设计创新、营销策略等,并深入研究了其目标消费群体和市场环境。此外,本文还分析了Zara如何通过品牌传播、社交媒体营销和线上线下融合,在数字时代提升品牌知名度和影响力。以全球最著名的快时尚品牌之一Zara为例,分析了Zara在品牌管理和营销策略方面的成功经验,为时尚零售品牌的发展提供有益的参考和启发。
飞秒激光制造技术已应用于光子范围模式(DE)多路复用器。基于飞秒激光制造技术的当前光子灯笼模式(DE)多路复用器设计主要遵循纤维型光子光子灯笼设计,该设计使用具有非均匀波导的轨迹对称结构进行选择性模式激发。但是,非均匀的波导可能导致不一致的波导传输和耦合损失。轨迹对称设计的选择性模式激发效率低下。因此,我们使用具有均匀波导的轨迹不对称性和制造的超快激光默认的光子灯笼模式(DE)多路复用器优化了设计。在1550 nm处的一致的波导传输和耦合损耗(分别为0.1 db/cm和0.2 db/facet)在均匀的单模波导上获得。基于光子灯笼模式(DE)多路复用器的轨迹 - 空气设计,有效模式激发(,,和)的平均插入损失在1550 nm时的平均插入损失低至1 dB,并且模式依赖性损失小于0.3 db。光子范围的设计对极化不敏感,而两极分化确定的损失小于0.2 dB。以及通过纤维型极化光束拆分器所实现的偏振化多路复用,六个信号通道(,,,,和)携带42个Gaud/s正交相位移位键信号,通过几个模式纤维进行传输,用于光学透射。这项研究的发现为3D集成光子芯片在大容量光学传输系统中的实际应用铺平了道路。系统的平均插入损失小于5 dB,而其与几种模式纤维的最大串扰小于-12 dB,导致4-DB功率损失。
高保真度的单量子比特和多量子比特操作构成了量子信息处理的基础。这种保真度基于以极其相干和精确的方式耦合单量子比特或双量子比特的能力。相干量子演化的必要条件是驱动这些跃迁的高度稳定的本振。在这里,我们研究了快速噪声(即频率远高于本振线宽的噪声)对离子阱系统中单量子比特和双量子比特门保真度的影响。我们分析并测量了快速噪声对单量子比特操作的影响,包括共振π旋转和非共振边带跃迁。我们进一步用数字方式分析了快速相位噪声对 Mølmer-Sørensen 双量子比特门的影响。我们找到了一种统一而简单的方法,通过量子比特响应频率下的噪声功率谱密度给出的单个参数来估计所有这些操作的性能。虽然我们的分析侧重于相位噪声和离子阱系统,但它也适用于其他快速噪声源以及其他量子比特系统,在这些系统中,自旋类量子比特通过共同的玻色子场耦合。我们的分析可以帮助指导量子硬件平台和门的设计,提高它们对容错量子计算的保真度。
大规模数据存储的爆炸性增长和对超快数据处理的需求需要具有出色性能的创新记忆设备。2D材料及其带有原子尖锐界面的范德华异质结构对内存设备的创新有着巨大的希望。在这里,这项工作呈现出所有由2D材料制成的功能层,可实现超快编程/擦除速度(20 ns),高消光率(最高10 8)和多位存储能力。这些设备还表现出长期的数据保留超过10年,这是由高栅极偶联比(GCR)和功能层之间的原子尖锐接口促进的。此外,这项工作证明了通过协同电气和光学操作在单个设备单元上实现“或”逻辑门的实现。目前的结果为下一代超速,超级寿命,非挥发性存储器设备提供了坚实的基础,并具有扩展制造和灵活的电子应用程序的扩展。
1化学,化学工程和生物技术学院,以及新加坡Nanyang Technological University的物理与数学科学学院,新加坡637371,新加坡
为了克服这一挑战,研究人员使用了Terahertz Light脉冲,这种光脉冲频率远低于可见光。这些脉冲会导致电子在分子和可以操纵单个分子的专用显微镜的金属尖端之间移动,从而使团队可以去除或添加电子。这种新方法提供了一种不仅以可控方式控制激子的方法,既快速又精确,而且还可以控制其他重要的分子状态,这些状态对于化学反应,能量传递和许多其他过程至关重要。该团队还证明了人眼看不见的Terahertz Light可以在分子中转化为可见光,从而揭示了一种新颖的方式,可以通过分子能量变化将一种类型的光转化为另一种光。