过敏(DIR)蛋白是木质素和木质蛋白生物合成的关键调节剂,在植物激素反应,非生物胁迫耐受性以及生长和发育中起关键作用。这项研究鉴定并表征了Moso Bamboo中的47个Pedir基因,将其分为三组。系统发育和比较分析显示出强烈的进化保守性,Moso Bamboo Pedir基因与水稻和玉米中的基因密切相关。dir蛋白在每个亚家族中均表现出较高的基序组成,结构域结构和3D配置。亚细胞定位和蛋白质相互作用研究进一步阐明了踏板基因的功能。特别是PEDIR02主要定位于细胞膜,被证明无法在酵母两杂交(Y2H)测定中形成同型二聚体。转录组和表达分析揭示了Pedir基因在快速芽生长中的参与,表明在木质素生物合成和细胞壁修饰中作用。转录组和QRT-PCR数据还证明了这些基因对激素和非生物胁迫(例如干旱和盐度)的反应性。这项研究构建了转录因子(TFS)和PEDIR基因之间的第一个全面的调节网络,将ERF,DOF和MYB TFS识别为PEDIR基因表达的关键协同调节剂。
除非因宗教信仰或病情而被原谅,否则不得将孩子入读该州的公立学校,除非他的父母或监护人屈服于学区的董事会,该儿童居住在该地区的董事会中,该证书属于该证书,说明孩子已被免疫接种并接受了适当的助学机,并遵守了nrs 439.550的计划: Covid-19-19疫苗给学校的卫生办公室。
QSR,超出当前的放缓,还提供了可扩展的,重要的是有利可图的机会。在全球基准和自下而上的商店潜在工作中,我们看到某些品牌(尤其是肯德基)有机会在FY30到30财年的双重商店。汇总者部分民主化了该部门(尤其是交付),但我们将品牌偏好和过程复杂性视为可以阻止任何市场份额损失并维持该行业增长潜力的护城河。因此,我们更喜欢鸡肉作为类别,在蓝宝石食品(蓝宝石)中,对其提供的可伸缩性进行了合理的估值。Devyani International(DIL)虽然拥有与蓝宝石相似的驾驶员,但尽管有可选的方式,但仍不保证溢价。欢欣鼓舞的食品工厂(JFL)有限的Domino(以下简称)和更重要的是SSSG概况(vs vs之前),即使考虑了DP Eurasia和Popeyes,也使估值太高了。我们更喜欢蓝宝石(买)> dil(卖出)> jfl(卖出)。
2018年3月,联邦调查局实验室建立了一个快速的DNA工作组,以研究快速DNA技术在分析法医证据样本中的潜在使用。该工作队分为两个任务组:非codis快速DNA最佳实践/外展和法庭注意事项任务组和快速DNA犯罪现场技术进步任务组(技术进步任务组)。技术进步任务小组由执法部门,地区检察官协会,主要城市酋长协会,NDIS参与实验室的DNA专家,NIST和非NDIS参与活动组成。技术进步任务小组的主要目标是驱动和不断监视快速DNA技术的成熟度,以确保其可靠,负责任和适当的犯罪现场DNA分析和Codis实施。
【2023年度成果(论⽂・特许)】1。J. H. Park等人,高度耐用的石墨烯封装的基于铂的电催化剂,用于通过溶液等离子体过程合成的氧气还原反应,功率来源杂志,580(2023),233419,2。J. H. Park等人,高度耐用的碳壳的新溶液等离子体合成,用于聚合物电解质膜燃料电池的高度耐用碳壳基于铂基的阴极催化剂,碳,214(2023),118364,3。M. Huda等人,单壁碳纳米管支持PT电催化剂作为单个燃料电池的阴极催化剂,其耐用性高/关闭/关闭电势循环,ACS Applied Energy Materials,6(2023)12226-12226-12226-122236 4。H. N. Nam等人,第一原告对石墨烯和氮掺杂石墨烯涂层的铂电催化剂的氧还原反应机制的研究,物理化学化学物理学,26(2024)10711-10722 5。出愿番号:2024-025901
摘要 — 目标:当存在多个声源时,当前助听器中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,它们可以与听觉注意解码 (AAD) 算法相辅相成,该算法使用脑电图 (EEG) 传感器解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组公共空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在短信号段上的表现优于刺激重建方法,在相同任务上的表现也优于卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明解码器可以适应来自未见对象的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用的神经引导听力设备迈出的重要一步。
单光子源(SPSS)是量子光学元件的基石,它提供了一种可靠的方式来确定性地生成高纯度光子按需生成高纯度光子[1,2]。存在大量的应用程序来利用这些来源,从量子信息处理和计算到量子加密[3-6],包括有效实施量子密钥分布(QKD)协议[6-8]。但是,实用的QKD需要集体解决几个SPS属性,包括亮度,纯度和稳定性。因此,对于在集成的光子系统中进行设计和包装的这种源有明确的需求。六边形硝酸硼(HBN)在该空间中特别感兴趣,作为一系列可以用作高质量SPS的原子缺陷,具有出色的亮度,稳定性,稳定性和良好的单光子纯度(可能不超过每脉冲一个光子的概率)[9-15] [9-15]。与需要低温冷却的基于量子点的对应物相比[1],基于HBN的SPSS在室温(RT)上运行,为量子通信中的应用提供了实际优势。但是,由于宿主晶体中的光捕获,所有固态SPS的主要缺点是有限的激发效率和/或收集效率。有多种旨在通过提高内部量子效率[16-18]和收集效率[19,20]来提高SPS性能的作品。但是,大多数方法都依赖于精确的发射极定位和/或纳米制造,使其变得复杂,难以扩展并且不适合批量生产。在这项工作中,我们开发并实现了基于HBN和固体浸入透镜(SILS)[21-23]的集成SPS。这种方法很有希望,因为SIL易于制造和商业上可用。我们表明,集成的HBN-SIL设备的示例超过了光子收集效率的六倍,产生了10 7 Hz的单光子收集速率,并且还能够保持G(2)(0)= 0.07的极好纯度,并且在许多小时的连续操作中都具有出色的稳定性。我们还展示了一个紧凑而强大的共聚焦显微镜设计,该设计