摘要:我们对硬件神经网络(NN)进行了不同的仿真实验,以分析不同数据集在网络准确性中不同NN体系结构的突触数量的作用。一项在4 kbit 1T1R reram阵列上的技术,其中采用了基于H FO 2电介质的电阻开关设备作为参考。在我们的研究中,考虑了完全致密的(FDNN)和卷积神经网络(CNN),在这种情况下,在突触的数量和隐藏层神经元的数量方面,NN的大小各不相同。cnns效果更好。如果包括量化的突触权重,我们观察到随着突触的数量减少,NN的精度显着降低。在这方面,必须实现突触数量与NN准确性之间的权衡。因此,CNN架构必须经过精心设计;特别是,注意到不同的数据集根据其复杂性需要特定的架构以取得良好的结果。表明,由于可以在NN硬件实现的优化中更改的变量数量,因此必须在每种情况下都在突触重量级别,NN体系结构等方面使用特定的解决方案。
摘要 生物体某一分支中某一性状的快速进化可以用自然选择的持续作用或高突变方差(即在自发突变下发生变化的倾向)来解释。高突变方差的原因仍然难以捉摸。在某些情况下,快速进化取决于一个或几个具有短串联重复序列的基因座的高突变率。在这里,我们报告了隐杆线虫外阴前体细胞中进化最快的细胞命运,即 P3.p。我们识别并验证了 P3.p 高突变方差的因果突变。我们发现这些位置不表现出任何高突变率的特征,分散在整个基因组中,相应的基因属于不同的生物途径。我们的数据表明,广泛的突变靶标大小是高突变方差和相应的快速表型进化率的原因。
1 Agctt Actt g c aagt aagtt 3 - 3 ACTTT 11 127 11 127 0 2 GCTT ACTT GG CC AAGC AAGC 5-5 ACTTT 11 127 127 127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GGT ACC AAGT AAG 5-5 ACTTT 11 127 127 0 4 TT-ACTT GTG CACC CACC AAGT AA 7 7 - 7 AAAGT ACTTT 11 127 11 127 0 0 6 ACTTT GGTGTT AACACC AAAGT 7 - 7 AAAGT ACTTT 11 127 11 127 0 0 0 7 CTTTG GTGTTT AAACA AAACA AAACA AAACA CCAAAG 9-9-9-9 AAAACA CTTTG 4 510 11 127 7 383 8 TTTGT TTG C AAAACA CCAAA 11-11 AAAACA GGTGT 699 11 127 7 572 10 T GGTGT TTGGT AC AC AAAACA 11-11 AAAACA GGTGT 11 127 7 572 12 GTGTT GGTAC AAAC AAACA C 7 7 7 AAAACA GGTAA 14 gttt ggtaa在attt accaaa c 5 −5 accaa ggtaa 80 688 688 572 15 ttt ggtaa atg catt act acca accaa a accaa a 5 -5 aaatg 14 14 14 765 685
隶属关系:1化学与生物化学系,鲁尔大学(Ruhr University Bochum); 44801德国Bochum 2Münster大学医院皮肤病学系; 48149Münster,德国3哥廷根大学物理化学研究所; 37077,德国哥廷根4号皮肤病学系,Venereology and Anterergology,大学医学中心,哥廷根大学; 37075Göttingen,德国5分子生理学,心血管生理研究所,大学医学中心,乔治 - 奥格斯 - 大学; 37075Göttingen,德国6 Max Planck多学科科学研究所分子神经生物学系; 37077Göttingen,德国7 Zemos溶剂化科学中心Ruhr University Bochum; 44801德国Bochum 8Münster大学生理化学与病原体化学研究所; 48149Münster,德国9个生物医学纳米传感器,Fraunhofer微型电路和系统研究所; 47057,德国杜伊斯堡 +共享第一名合着者
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,请引用TSPACE版本,此外已发布
Essen/Geertruidenberg,2024年9月9日,RWE通过创新的电网稳定性技术扩展其电池存储业务。该公司已开始在其位于荷兰的Moerdijk的电厂站点上建造一个超快速的电池存储系统,其安装容量为7.5兆瓦(MW),存储容量为11兆瓦小时(MWH)。具有在毫秒内提供或吸收电力的能力,该系统将有助于维护电网。此功能称为惯性。Moerdijk电池存储项目是Oranjewind的系统集成解决方案的一部分,Oranjewind是RWE的荷兰海上风项目和TotalEnergies。Oranjewind是通过电动汽车,电动汽车,电子机器人和电池存储系统将间歇性可再生能源生成整合到荷兰能源系统中的新方法。Marinus Tabak,Rwe Generation的首席运营官,荷兰RWE乡村主席:“借助Moerdijk电池存储系统,我们是开创性的网格技术作为传统解决方案(例如电站)的替代方法。这为通往更可持续但可靠的能源未来的途径提供了途径。这样的电池存储系统对于将来的电网稳定至关重要,因为欧洲的能源市场正朝着可再生能源和分散的能源系统迈进。”随着能源系统中可再生能源的份额增加,保持网格稳定性变得越来越困难因此,惯性作为网格系统中最快的平衡能量的作用至关重要。在燃煤发电厂中。过去,惯性主要是由旋转的传统发电机旋转的,例如作为可再生能源替代常规发电植物,旋转发电机的数量减少。电池存储系统可以补偿网格中同步惯性的损失。
Ariane 6可以使用多发键服务(MLS)配置中的双启动或启动。在[RD1]和[RD2]中描述了所有配置的可用有效载荷量和标准机械接口。双重启动配置不是Ariane 62的标准配置,但可以通过Ariel和Comet Interceptor的情况下使用自定义双启动结构(“ Light DLS”)实现。双重发射结构的典型质量为600-800千克(取决于其高度)。任务CAC将必须包括双发射结构的成本(这将抵消了发射车的较低成本)。可以针对F和M任务提出Ariane 62在双启动配置中的使用。作为任何任务的现有ESA双重启动机会均未预先确定,建议者应建议可能的乘客。MLS配置与最大质量为500 kg的小型/迷你卫星有关。可用选项在[RD2]中详细描述。5.1.2。 Vega-C5.1.2。Vega-C