摘要:在这项研究中,使用快速蒸发的气溶胶液滴法通过毛细管组合制备了皱巴布的石墨烯氧化石墨烯(CGB)。使用扫描电子显微镜(SEM),高分辨率透射电子显微镜(HRTEM)和拉曼光谱观察到CGB。使用激光纳米粒径分析仪(DLS)获得碎颗粒的尺寸分布。通过超声分散测试水和离子液体(IL)的分散性。通过往复式摩擦测试仪和水/离子液体与氧化石墨烯配对的水或离子液体测试了水或含有碎石烯的氧化石墨烯球添加剂(W/IL-CGB)的摩擦学特性。通过三维光学显微镜观察到磨损疤痕的形态,并分析了其润滑机制。结果表明,CGB通过气溶胶液滴快速蒸发而成功制备了CGB,并且获得的CGB被弄碎的纸球。CGB具有良好的水分散体和离子液体分散体,IL-CGB对钢与钢摩擦对具有出色的抗摩擦和抗衣作用。在摩擦过程中,CGB被吸附在钢 - 钢对的界面上以形成保护层,从而避免了摩擦对的直接接触,从而减少了摩擦和磨损。
尽管如此,由于文献或材料供应商数据表中关于材料高温 CHS 的报道非常少,因此湿气引起的应力大多被忽略。这是由于缺乏有效的测量方法和该领域的技术知识 [5]。由于测量过程中湿气会快速蒸发,因此测量高温膨胀具有挑战性。市售工具,如带相对湿度附件的动态机械分析仪 (DMA-RH) [5, 6],其温度能力有限,最高可达 85 !C,而典型的无铅焊料回流工艺可高达 260 !C。更高温度的测量在技术上具有挑战性。需要更高的压力来将湿气保持在高温下的液态,而使用当今的标准工具根本无法实现。一种更流行的方法是使用标准热机械分析仪 (TMA) 设备来测量加热时饱和样品的应变。快速解吸会导致湿气分布不均匀。因此,假设应变为平均应变。需要进行额外的水分质量校正后处理分析来补偿水分损失。据报道,这种方法往往会高估 CHS [2, 4]。此外,一些研究建议避免使用基于解吸的方法,因为某些材料可能具有不可逆的吸湿膨胀特性 [7]。另一种尝试过的方法是莫尔干涉法 (MI) [8, 9],它具有良好的准确性和可重复性。然而,它有固有的局限性,因为在样品表面复制的耐腐蚀光栅会导致测量误差,尤其是对于薄样品。此外,所有这些都是