神经反馈训练 (NFT) 为现代医学界做出了有益的贡献。NFT 是基于操作性条件作用原理的生物反馈的一个子集。它是一种建立行为与效果之间关系的学习方法,可获得奖励和惩罚 (Cherry, 2020; Engelbregt 等人, 2016; Strehl, 2014)。从理论上讲,生物反馈是自动神经系统 (ANS) 的生物学见解。在其起源之前,“实时生理镜像”一词在第二次世界大战期间就已存在 (Sattar & Valdiya, 2017)。它仅限于心率、血压、皮肤温度、消化、呼吸和性唤起等生理过程。所有示例都是非自愿的,由 ANS 控制。在 1950 年代,一个反对的科学家团队不赞成 ANS 可能影响人类生理和心理状态的想法,这些状态也会对生物过程起作用 (Jones, 2016)。它在操作性条件、信息处理或技能学习方面仍存在疑问。此外,该假设不足以作为药物治疗的基础(Sattar & Valdiya,2017;Jones,2016)。研究人员在 20 世纪 60 年代发现,ANS 功能可能会发生类似于操作性环境的改变。因此,这是一个将生物反馈转变为可用于医疗实践的适当治疗方法的机会。
科学文献中已经通过多种技术广泛分析了与效价/唤醒空间的四个象限相对应的情绪状态的识别。然而,这些方法中的大多数都是基于对每个大脑区域的单独评估,而没有考虑不同区域之间可能存在的相互作用。为了研究这些相互联系,本研究首次计算了称为跨样本熵的功能连接指标,用于分析来自脑电信号的四组情绪的大脑同步。结果报告了中央、顶叶和枕叶区域之间的互连具有很强的同步性,而左额叶和颞叶结构与其他大脑区域之间的相互作用表现出最低的协调性。这些差异对于四组情绪具有统计学意义。所有情绪同时被分类,准确率为 95.43%,超过了以前研究报告的结果。此外,考虑到对应维度的状态,效价和唤醒的高低水平之间的差异也提供了关于不同情绪条件下大脑同步程度的显著发现,以及可能的
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
摘要 人们普遍认为,脑脊液 (CSF) 运动是由脑内血管壁运动 (即血流动力学振荡) 促进的。最近,通过功能磁共振成像 (fMRI) 发现了非快速眼动 (NREM) 睡眠期间低频血流动力学振荡和 CSF 运动的连贯模式。这一发现提出了其他基本问题:1)从 fMRI 信号解释血流动力学振荡和 CSF 运动之间的耦合;2)清醒状态下是否存在耦合;3)CSF 运动的方向。在这项静息态 fMRI 研究中,我们提出了一个力学模型,通过 fMRI 的视角来解释血流动力学和 CSF 运动之间的耦合。计算了 CSF 运动和整体血流动力学之间的时间延迟。观察到的血流动力学和 CSF 运动之间的延迟与模型预测的延迟相符。此外,通过对大脑和颈部进行单独的 fMRI 扫描,我们证实了第四脑室的低频 CSF 运动是双向的。我们的研究结果还表明,即使个体处于清醒状态,脑脊液运动也主要受到低频范围内脑血容量变化的促进。
摘要 — 监测麻醉期间的意识深度对于临床环境和神经科学研究都有助于了解大脑机制。脑电图 (EEG) 已被用作实时表征麻醉剂引起的大脑改变的唤醒和/或认知状态的客观手段。不同的全身麻醉剂以不同的方式影响脑电活动。然而,由于 EEG 信号的信噪比 (SNR) 低,尤其是在办公室麻醉 EEG 环境中,传统机器学习模型在 EEG 数据上的表现并不令人满意。深度学习模型因其良好的泛化和处理噪声的能力而被广泛应用于脑机接口 (BCI) 领域以执行分类和模式识别任务。与其他深度学习已显示出令人鼓舞的结果的 BCI 应用相比,用于对麻醉下不同大脑意识状态进行分类的深度学习方法的研究要少得多。在本文中,我们提出了一种基于元学习的新框架,使用深度神经网络对麻醉状态下的大脑状态进行分类,即 Anes-MetaNet。Anes-MetaNet 由卷积神经网络 (CNN) 组成,用于提取功率谱特征,基于长短期记忆 (LSTM) 网络的时间后果模型用于捕获时间依赖性,以及元学习框架用于处理跨主体的大量差异。我们使用多阶段训练范例来提高性能,这可以通过可视化高级特征映射来证明。通过与现有方法进行比较,在办公室麻醉脑电图数据集上进行的实验证明了我们提出的 Anes-MetaNet 的有效性。
衡量社会不良行为(如不诚实)的决定因素非常复杂,而且受社会期望偏见的影响。为了避免这些偏见,我们使用基于连接组的预测模型 (CPM) 来测量静息状态的功能连接模式,并结合一项新任务,该任务不引人注意地测量自愿作弊行为,以获得 (不) 诚实的神经认知决定因素。具体来说,我们研究了静息状态下大脑中与任务无关的神经模式是否可用于预测 (不) 诚实行为的倾向。我们的分析表明,功能连接,尤其是与自我参照思维 (vmPFC、颞极和 PCC) 和奖励处理 (尾状核) 相关的大脑网络之间的功能连接,在独立样本中与参与者的作弊倾向可靠相关。作弊最多的参与者在几项自我报告的冲动测量中也得分最高,这强调了我们结果的普遍性。值得注意的是,当比较神经和自我报告测量时,发现神经测量在预测作弊倾向方面更为重要。
由于其两维的性质以及存在两个良好的物理极限 - 线性和弯曲的配置,以及中间性构造 - 质中性物种 - 质膜(Quasilinear)物种 - 由大峰值运动使其富有谱图,因此,的研究已被促进了自由度的研究。 Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。 光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。 以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。 水[7]和NCNC [8-10]获得的结果特别相关。 最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。 这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。的研究已被促进了自由度的研究。Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。水[7]和NCNC [8-10]获得的结果特别相关。最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。这是一个从经典力学借来的概念,一旦系统能量足够大以探测局部鞍点或最大值,以防止定义全球动作角变量的定义[14]。非矛盾分子物种中弯曲振动的理论建模需要特殊工具,因为较大的振幅振动自由度强烈地伴随着自由度和旋转的自由度。这项工作后来扩展到了半irigid bender hamiltonian [16]和一般的semirigid bender hamiltonian [17]。基于上述开发的模型[18]目前是分析非矛盾分子光谱的标准方法,其中同时考虑了旋转和振动自由度的同时考虑实验术语值的建模和量子标签的分配所需。代数方法,尤其是Vibron模型是传统的分子模型的传统内部差异方法的替代方法。该模型基于对称考虑因素,并在很大程度上依赖于Lie代数的特性[19]。Vibron模型(VM)属于一个模型家族,该模型分配了U(n + 1)代数为n维问题的动力学或频谱生成代数[20]。类似的模型已成功地应用于哈德子[21,22]和核[23-25]的结构的建模。2DVM定义了一种形式主义,该形式主义能够建模弯曲程度的线性和弯曲限制案例,以及表征中间情况的大幅度模式[30-33]。在原始的Vibron模型形式主义中,由Iachello引入,双子型分子物种的反振动激发被视为集体骨气兴奋[26],并且动态代数为u(3+1)= u(4),由于自由度的相关程度[25,25,27]。弯曲振动的二维性质以及简化Vibron模型形式主义以有效地处理多原子系统的需求,自然而然地驱动着vibron模型(2DVM)的二维极限的制定[28,29]。最近发表了在本工作中使用的代数哈密顿量的四体操作员的扩展[34]。2DVM也已用于耦合弯曲器的建模[28,35-37],拉伸弯曲中的相互作用[38-41]和异构反应中的过渡态[42]。
背景。原发性眼睑痉挛 (BSP) 是最常见的局灶性肌张力障碍之一,其病理生理机制尚不清楚。采用无偏方法观察静息状态下 BSP 患者的全脑功能连接 (FC) 变化。方法。共招募 48 名受试者,包括 24 名未经治疗的 BSP 患者和 24 名健康对照者,进行功能性磁共振成像 (fMRI)。采用全脑 FC (GFC) 方法分析静息态 fMRI 数据。我们设计了支持向量机 (SVM) 方法来确定是否可以利用 GFC 异常来区分患者和对照组。结果。与健康对照者相比,BSP 患者的双侧上内侧前额皮质/前扣带皮层 (MPFC/ACC) 的 GFC 显著降低,而右侧中央后回/中央前回/副中央小叶、右侧上额叶 (SFG) 和左侧副中央小叶/补充运动区 (SMA) 的 GFC 升高,这些区域均包含在默认模式网络 (DMN) 和感觉运动网络中。SVM 分析表明,右侧中央后回/中央前回/副中央小叶中升高的 GFC 值可将患者与对照者区分开来,最佳准确度、特异度和灵敏度分别为 83.33%、83.33% 和 83.33%。结论。本研究表明感觉运动网络和 DMN 相关脑区 GFC 异常可能是 BSP 病理生理的基础,这为理解 BSP 提供了新的视角。右侧中央后回/中央前回/中央旁小叶的 GFC 可作为潜在的生物标志物,用于区分 BSP 患者和对照组。
I. 引言清醒开颅手术是神经外科中一种强大而灵活的手术,可减少医源性神经损伤。清醒开颅手术最先用于癫痫的外科治疗,随后被用于治疗脑幕上肿瘤、血管病变、脑 1、2、3 关键区域附近的深部脑刺激患者。在清醒开颅手术期间,患者的积极参与对于外科医生的术中决策是必不可少的。清醒开颅手术具有降低术后发病率、促进早日出院的独特优势。神经外科医生及其团队的主要目标是通过减少患者的心理生理痛苦和发病率来确保手术安全有效。我们注意到,在术中播放患者最喜欢的大片《巴霍巴利王》可以有效地分散患者的注意力。我们报告了一例罕见病例,该病例的海绵状瘤位于左侧感觉皮层与运动区相邻处,表现为复发性癫痫。