抽象中微子振荡被视为一种有趣的物理现象,并显示了显然是由Leggett – Garg不平等产生的非经典特征。不明显的原则是将量子世界与经典同行分歧的基本特征之一。和原则可以用熵来描绘,熵构成所谓的熵不确定性关系(欧洲)。在这项工作中,通过比较中微子振荡的实验观察到预言,研究了与中微子 - 流动状态相关的熵不确定性关系。从两个不同的中微子来源中,我们分析了反应器和加速器中微子的集合,用于不同的能量,包括Daya Bay协作进行的测量结果,使用探测器在距源为0.5和1.6 km的探测器,AndBytyBytyMinoscollaboraboraboraboraboraboraboraboraboraboraboraboraboraboraboraboraboraboraboration usingAdectorWith a 7355 km距离中环源。发现基于熵的不确定性条件强度随着能量的增加而表现出非单调的演变。我们还列出了通过量子共同测量的全身量子,并得出了量子相关与欧元之间的内在关系。此外,我们还利用欧元作为宗旨来检测中微子 - avor状态的纠缠。我们的结果可以说明中微子振荡在弱相互作用过程中量子信息处理的潜在应用。
介电常数是一个值,它被广泛应用于许多科学领域,并且表征了外部电场下物质的极化程度。在这项工作中,研究了一组聚合物集的介电常数(ε)的结构质体关系。通过应用遗传算法与多个线性回归分析(GA-MLRA)相结合的遗传算法开发了一个透明的机械模型,以获得机械上可解释且透明的模型。基于使用各种验证标准进行的评估,提出了四个和八变量的模型。在最佳模型中分析并讨论了最佳模型中选定的描述符。使用验证程序应用模型具有良好的预测能力和鲁棒性。
在第四部分中,我们讨论下水道模拟。Shannon的频道编码定理通过描述如何用Dunning运河模拟完美的运河来确定经典运河使用经典信息的容量。在这里我们查看反向问题;我们想用完美的运河模拟运河。基于经典结果(倒向香农通道编码定理),我们开发了各种量子机械尺寸。为此,我们使用量子机械相关性,并使用经典和量子机械随机提取器,从量子机械观察者的角度来看,它们也起作用。最后,我们讨论了编码理论,量子物理学和量子密码学PHY中的应用。
自2022年5月以来,在美国,已有30,000多个Monkeypox(MPOX)病例在美国,主要是在男同性恋,双性恋和其他与男性发生性关系的男性(1,2)中。最近几个月,诊断平均每天下降了一个病例。然而,MPOX疫苗接种覆盖率在区域变化,表明MPOX爆发复发的潜在风险可变(3)。CDC模拟了代表MSM之间的性行为的动态网络模型,以估计2023年在管辖区水平上复发MPOX爆发的风险和潜在大小,并评估疫苗接种对MPOX重新引入的准备的好处。MPOX重新引入后发生爆发的风险与具有某种形式的保护性免疫力的MSM的比例是线性的(成反比):免疫的人口流行率越高(来自疫苗接种或自然感染),在所有免疫级别跨度级别中,复发的可能性越低。相比之下,潜在的复发爆发的大小可能具有阈值:预计MPOX免疫的管辖区的复发很小,为50%–100%;预计以25%–50%的免疫力的司法管辖区预测,复发的大小呈指数增加;预计少于25%的免疫力的管辖区预测了较大的复发尺寸。在所检查的50个司法管辖区中,由于人口较高的免疫力,预计15个司法管辖区的复发风险很小。该分析强调了对可访问和持续的MPOX疫苗接种的持续需求,以减少未来MPOX复发的风险和潜在大小。
引入可再生能源 (RE) 对于建设可持续社会至关重要。然而,可再生能源可能导致能源生产和生物多样性保护之间的冲突。本研究进行了情景分析,以评估日本东北部别间屋史河流域能源与生物多样性之间关系的潜在冲突。由于农民人口减少,牧场废弃率不断上升,这是该地区的一个巨大不确定性来源。选择了两种替代可再生能源来利用这些废弃的牧场,每种都采用独特的方法来满足区域能源计划规定的目标,从而在景观尺度上产生不同的生态后果。模拟了 31 种可再生能源引入方案,包括一系列牧场废弃扩张速度和太阳能光伏 (PV) 电厂安装与生物质能使用的比例。使用两种 IPCC 代表性浓度路径 (RCP) 情景(2.6 和 8.5)将它们叠加,从而产生了 62 种情景,这些情景根据可再生能源供需平衡和生态影响被概括为三组。使用 LANDIS-II 模型模拟了 2016 年至 2100 年的这些情景。结果表明,牧场废弃率和两种可再生能源的比例都对树种多样性和猛禽栖息地适宜性的变化有很大影响。转变为树木生物质能生产的废弃牧场转向以先锋物种为主的森林。过渡森林的植物物种组成因气候情景而异。RCP 8.5 情景中到 2100 年的较高温度阻止了白桦的建立,并改变了树种多样性和毛叶木的栖息地适宜性。生物质能利用产生的能量少于需求,但增加了三个生态指标。太阳能光伏系统提供的能源超过了区域需求,但两个地区的树木多样性和栖息地适宜性指数
疫苗有助于防止某些类型的癌症,这些癌症可能由HPV以及90%的生殖器疣感染引起。HPV是一种非常常见的病毒,通过皮肤传播到皮肤接触,通常与性交有关。大多数人一生都会感染HPV。它通常没有症状,因此您可能不知道自己有。在大多数人中,HPV本身都会被清除,但是携带病毒意味着您患有肛门生殖器癌(肛门,阴茎,阴道,外阴,宫颈),头颈部和颈部癌症以及生殖器疣的风险更高。这也意味着您可以将病毒传递给他人。随着性伴侣的数量增加,HPV收缩的风险会增加。避孕套不能完全保护HPV,因为它们不覆盖皮肤的所有区域。预防HPV相关疾病的最佳方法是通过疫苗接种。
我们提出了几个与罗伯逊-薛定谔不确定关系相关的不等式。在所有这些不等式中,我们考虑将密度矩阵分解为混合状态,并利用罗伯逊-薛定谔不确定关系对所有这些成分都有效的事实。通过考虑边界的凸顶部,我们获得了 Fröwis 等人在 [ Phys. Rev. A 92 , 012102 (2015) ] 中的关系的另一种推导,并且我们还可以列出使关系饱和所需的许多条件。我们给出了涉及方差凸顶部的 Cramér-Rao 边界的公式。通过考虑罗伯逊-薛定谔不确定关系中混合状态分解的边界的凹顶部,我们获得了罗伯逊-薛定谔不确定关系的改进。我们考虑对具有三个方差的不确定性关系使用类似的技术。最后,我们提出了进一步的不确定性关系,这些关系基于双模连续变量系统的标准位置和动量算符的方差,为二分量子态的计量实用性提供了下限。我们表明,在 Duan 等人 [ Phys. Rev. Lett. 84 , 2722 (2000) ] 和 Simon [ Phys. Rev. Lett. 84 , 2726 (2000) ] 的论文中讨论了这些系统中众所周知的纠缠条件的违反,这意味着该状态在计量学上比某些相关的可分离状态子集更有用。我们给出了有关自旋系统具有角动量算符的纠缠条件的类似结果。
这项调查试图调查有关不确定性关系(UR)和量子测量(QMS)的普遍哲学的真理和定义。相应的哲学被称为未经证实的争议,被揭示为基于六个基本戒律。,但有人发现所有各自的戒律都被无法克服的义务抹黑。因此,关于ur,所指的哲学揭示了一个自我是一种不合理的神话。然后,您的出现是短暂的历史惯例,或者是简单且有限的数学公式,而没有任何必要的物理学。这样的发现加强了狄拉克的预测,即“以目前的形式无法在未来的物理学中生存”。您的著名方面激励着对QMS相关辩论的重新考虑。主要是表明,正确地,您与QM的真实描述没有任何必要的联系。对于此类描述,有必要从数学上,可观察到的量子可被视为随机变量。用单个采样的测量场景,例如波函数崩溃或Schr odinger的Cat Thought实验,被揭示为无用的发明。我们建议将QM描述为随机数据的传输过程。请注意,对于现有的量子辩论,上述UR – QMS重新估计,在问题方法中为有利可图的简约辩论提供了一些论点。这些辩论的无效方面也必须重新考虑,可能或多或少地投机愿景。
这种策略对于与男性发生性关系的男性,受艾滋病毒受艾滋病毒影响最大的男性(36)和美国(37)尤为重要。在与男性发生性关系的男性中,患有细菌性传播感染的男性增加了患HIV的风险:一项从2021年开始的荟萃分析发现,与男性发生性关系的男性在感染衣原体的患者中获得性关系的风险大两倍,而感染了梅毒和梅毒和gonorrhea的人多达四倍。这是由于多种生物学机制所致,其中STI的存在可以增强对HIV的敏感性(38-40)。此外,在启动HIV前暴露前预防的个体中,有一个很高的性传播感染负担:在16项研究的荟萃分析中,合并的患病率(即基于多项研究的数据),淋病和早期梅毒的患病率在开始HIV PREP之前近24%(41)。
1。简介:attosond Electron动力学,Petahertz光电子和量子力学中的“损失时间”的问题370 2。量子力学中的严重问题:量子跳跃,不确定性关系和Pauli定理371 2.1 Bohr的理论,量子跳跃和时间测量的不确定性; 2.2 Pauli的定理3。量子力学中的时间面孔372 3.1内部和外部时间; 3.2作为量子可观察的时间和时间操作员; 3.3延迟时间4。mandelstam±tamm不确定性关系374 5。量子保真度和量子速度限制375 6。能量±时间不确定性,与时间有关的汉密尔顿人375 7。激光驱动的量子动力学376 8。不确定性关系和电子动力学的速度限制376 9。Keldysh参数和光电子的Petahertz极限378 10。mandelstam±Tamm的不确定性关系和量子进化的信息几何度量379 10.1量子演化的几何形状; 10.2量子保真度和渔民信息; 10.3不确定性关系和cram er±rao绑定11。量子速度极限的非量化性质381 12。热力学不确定性限制382 12.1信息指标和热力学不确定性; 12.2膜蛋白温度阈值的热力学极限13。结论383参考383