医疗响应和 CBRN 能力发展的特点是不断创新,这是行业和专业研究机构高水平研发以及与用户(特别是成员国医疗和 CBRN 指挥部/中心)密切合作的结果。欧洲国防工业通常充当民用解决方案的集成商,为军事客户提供服务。考虑到与北美和亚洲公司的激烈竞争,以及其在成员国 (MS) 和欧洲国防能力优先事项中的体现,在欧洲层面持续投资这一领域非常重要。因此,特别关注 CBRN 威胁检测、识别和监控以及医疗 CBRN 对策开发领域能力的持续和战略发展。
受自然界生物运动的启发,在过去的十年中对多机构系统(MASS)的合作运动进行了广泛的研究(Wang等,2017,2019; Wang and Sun,2018; Wang等,2020b; Koru等,2021年; Wang and Sun,2021年)。与单个代理相比,网络质量具有快速命令响应和鲁棒性的优势。由于分布式网络计算系统具有强大的可伸缩性和快速计算速度的特征,对多机构系统的分布式合作控制问题的研究已吸引了控制科学家和机器人工程师在许多情况下的广泛应用的越来越多的注意力,例如移动机器人,例如移动机器人(Mu等,2017; Zhao et al。 2016; Li等人,2019年)和航天器(Zhang等,2018; 2021a)。与开关拓扑合作控制与开关拓扑合作的经典框架。Ren和Beard(2005)进一步放松了Olfati-Saber和Murray(2004)给出的条件,这些条件就线性质量的共识提出了一些新的结果。实际上,有必要在离散时间内调查多代理系统的控制问题,而大多数计算机系统是离散的结构。在Liang等人的研究中。 (2017),研究了不均匀离散时间线性多代理的合作遏制控制问题,并设计了一种新型的内部模式补偿器来处理系统动力学的不确定部分。 (2018)。 su等。 多代理共识在Liang等人的研究中。(2017),研究了不均匀离散时间线性多代理的合作遏制控制问题,并设计了一种新型的内部模式补偿器来处理系统动力学的不确定部分。(2018)。su等。多代理共识Liang等人在研究中给出了基于线性基质不等式(LMI)的离散时间MAS分散共识问题的解决方案方法。LV等人讨论了基于终端迭代学习框架的多代理共识控制问题。(2018)提出了基于时间变化控制输入的自适应控制方法以改善系统的控制性能。(2019)提出了一种基于低增益反馈方法和修改的代数riccati方程的分布式控制算法,以实现离散时间质量质量降低输入饱和条件的半全球共识。
嗜酸性肉芽肿性多血管炎 (EGPA,Churg-Strauss 综合征) 是抗中性粒细胞胞浆抗体 (ANCA) 相关性血管炎 (AAV) 中的一种罕见的系统性坏死性肉芽肿性血管炎。尽管如此,EGPA 仍具有不同于其他 AAV [显微镜下多血管炎 (MPA) 和肉芽肿性多血管炎 (GPA)] 的特定临床、生物学和组织学特性。最近,由于对 EGPA 病理生理学的研究,我们发现与其他 AAV 中的中性粒细胞不同,EGPA 中涉及的主要细胞是嗜酸性粒细胞。嗜酸性粒细胞在 EGPA 中的关键作用以及最近开发的用于治疗其他嗜酸性粒细胞相关疾病的靶向药物为 EGPA 创造了新的治疗机会。EGPA 的传统治疗主要依赖于消炎药物。基础治疗是全身性糖皮质激素,可单独使用或与免疫抑制剂联合使用。然而,需要新的治疗方法,尤其是对于持续性哮喘症状、难治性疾病、复发和与皮质类固醇依赖相关的问题。最近,第一项针对多血管炎和嗜酸性肉芽肿的大规模随机对照临床试验证明了针对嗜酸性粒细胞的生物疗法抗白细胞介素 5 (IL-5) 美泊利单抗的疗效,并被批准用于治疗 EGPA。这一发现为 EGPA 管理开辟了一个新时代。本综述根据新的靶向生物疗法概述了嗜酸性肉芽肿性多血管炎。
摘要:为了在电子封装领域引入新的键合方法,进行了理论分析,该分析应提供有关反应多层系统 (rms) 产生足够的局部热量以用于硅片和陶瓷基板之间连接工艺的潜力的大量信息。为此,进行了热 CFD(计算流体动力学)模拟,以模拟 rms 反应期间和之后键合区的温度分布。该热分析考虑了两种不同的配置。第一种配置由硅片组成,该硅片使用包含 rms 和焊料预制件的键合层键合到 LTCC 基板(低温共烧陶瓷)。反应多层的反应传播速度设置为 1 m/s,以便部分熔化硅片下方的焊料预制件。第二种配置仅由 LTCC 基板和 rms 组成,用于研究两种布置的热输出之间的差异。 CFD 模拟分析特别侧重于对温度和液体分数轮廓的解释。进行的 CFD 热模拟分析包含一个熔化/凝固模型,该模型除了模拟潜热的影响外,还可以跟踪焊料的熔融/固态。为了为实验研究的测试基板设计提供信息,模拟了 Pt-100 温度探头在 LTCC 基板上的实际行为,以监测实验中的实际键合。所有模拟均使用 ANSYS Fluent 软件进行。
摘要:遗传性转甲状腺素蛋白介导 (hATTR) 淀粉样变性是一种由 TTR 基因突变引起的进行性疾病,可导致多系统器官功能障碍。致病性 TTR 聚集、错误折叠和纤维化导致淀粉样蛋白沉积在多个身体器官中,并经常影响周围神经系统和心脏。常见的神经系统表现包括:感觉运动性多发性神经病 (PN)、自主神经病、小纤维 PN 和腕管综合征。由于 hATTR PN 不属于鉴别诊断,因此诊断延迟导致许多患者病情明显进展。最近,加拿大卫生部批准了两种有效的新型疾病改良疗法 inotersen 和 patisiran,用于治疗 hATTR PN。早期诊断对于及时引入这些疾病改良疗法至关重要,这些疗法可以减少损伤、改善生活质量并延长生存期。在本指南中,我们旨在通过针对加拿大的诊断、监测和治疗提出建议来提高对 hATTR PN 的认识和结果。
摘要:迄今为止,基因治疗一直采用病毒载体来传递治疗基因。然而,分子和细胞生物学的最新进展彻底改变了干细胞和基因治疗领域。几年前,临床试验开始使用干细胞替代疗法,诱导多能干细胞 (iPSC) 技术与 CRISPR-Cas9 基因编辑相结合,开启了神经系统疾病基因治疗的新时代。在这里,我们总结了该研究领域的最新发现并讨论了它们的临床应用,强调了最近的研究在开发创新干细胞和基因编辑治疗方法方面的相关性。尽管致瘤性和免疫原性是现有的障碍,但我们报告了最近的进展如何解决它们,使工程干细胞移植疗法成为一种现实的选择。
摘要:由于人类与实验动物之间的物种差异,对人类心脏病的病理生理学和细胞对药物的反应的全面了解受到限制。此外,人类心肌细胞 (CM) 的分离很复杂,因为通过活检获得的细胞不会增殖,从而无法为体外临床前研究提供足够数量的细胞。有趣的是,人类诱导多能干细胞 (hiPSC) 的发现开辟了在培养皿中生成和研究心脏病的可能性。重编程和基因组编辑技术相结合可在体外生成广泛的人类心脏病,为阐明基因功能和机制提供了绝佳机会。然而,为了挖掘 hiPSC 衍生的 CM 在药物测试和研究成人心脏病方面的潜在应用,需要对成熟和代谢特征进行全面的功能表征。在本综述中,我们重点介绍了将体细胞重新编程为 hiPSC 的方法,以及克服 hiPSC 衍生 CM 不成熟的解决方案,以模拟成人 CM 的结构和生理特性,从而准确模拟疾病并测试药物安全性。最后,我们讨论了如何改进 CM 的培养、分化和纯化,以获得足够数量的所需类型的 hiPSC 衍生 CM,用于疾病建模和药物开发平台。
抗体 - 药物缀合物(ADC)是临床癌症治疗的最重大进步之一,无论如何,它们与低药物/抗体比(DAR)(DAR),需要大量抗体和复杂化学的基本问题所困扰。提供有希望的ADC替代方案的靶向纳米医学会遭受药物泄漏和癌症特异性的折磨。在此,我们开发了一种基于抗CD44抗体 - 授生素-DM1偶联物(ACD44-AP-DM1)的智能细胞选择性纳米毒素,以对实体瘤的有效治疗。dm1在自组装过程中通过二硫键同时耦合到囊泡膜和抗CD44抗体中,并将抗CD44抗体偶尔单击地单击到多晶层表面上,从而量身定制最佳的ACD44-AP-DM1,并用5.0的5.0释放275的DARMON-DARMONS aPERINAL dARMON-dARMON-dARMON-ZERO释放和快速ductive defuct-Refuct-Ref-Ref-Ref-Rectpect-apep-ap-dm1。ACD44-AP-DM1对MDA-MB-231三重阴性乳腺癌,SMMC-7721肝细胞癌和A549非小细胞肺癌细胞具有高特异性和特殊的细胞毒性。 47.2倍超过未靶向的P-DM1。有趣的是,ACD44-AP-DM1的全身给药可显着抑制裸鼠皮下MDA-MB-231肿瘤异种移植,而肿瘤内注射可在五只小鼠中四分之四完全消除肿瘤,而不会引起毒性。这种智能细胞选择性纳米毒素已成为靶向癌症治疗的ADC的更好平台。
免疫治疗已成为肝细胞癌综合治疗中不可或缺的一部分,对早期肝细胞癌、晚期肝细胞癌或肝移植后肝细胞癌复发患者均有疗效。临床上最常用的免疫治疗是使用单克隆抗体(如CTLA-4、PD-1)进行免疫检查点抑制,但无法从根本上解决免疫系统减弱和参与杀伤肿瘤细胞的免疫细胞失活的问题。T细胞可以通过基因编辑在细胞表面表达识别肿瘤抗原的T细胞受体(TCR)或嵌合抗原受体(CAR),以提高免疫细胞的特异性和反应性。根据前期研究,TCR-T细胞疗法在实体瘤治疗中明显优于CAR-T细胞疗法,是目前最有前景的实体瘤免疫细胞疗法之一。但其在HCC治疗中的应用仍在研究中。诱导多能干细胞 (iPSC) 诱导和再分化的技术进步使我们能够使用 T 细胞诱导 T 细胞衍生的 iPSC (T-iPSC),然后将其分化为 TCR-T 细胞。这为研究 HCC 模型和探索最佳治疗策略提供了一种便捷的策略。本综述概述了从 T-iPSC 生成新抗原特异性 TCR-T 细胞的方案开发方面的主要进展。我们还将讨论它们在 HCC 治疗中的潜力和挑战。
B 细胞成熟抗原 (BCMA) 特异性嵌合抗原受体 (CAR) T 细胞疗法已显示出对复发/难治性多发性骨髓瘤 (RRMM) 的疗效。由于非人类来源的抗原靶向结构域可能会限制临床疗效,我们开发了一种完全人源 BCMA 特异性 CAR CT103A,并在 1 期试验中报告了其安全性和疗效。连续 18 名 RRMM 患者入组,其中 4 名患者曾接受过鼠 BCMA CAR 治疗。剂量递增期以 1、3 和 6 (3 10 6) CAR 阳性 T 细胞/kg 施用 CT103A,扩增队列以 1 (3 10 6) CAR 阳性 T 细胞/kg 施用 CT103A。总体反应率为 100%,72.2% 的患者达到完全反应或严格完全反应。对于 4 名接受鼠 BCMA CAR 治疗的患者,3 名获得严格的完全缓解,1 名获得非常好的部分缓解。1 年时,所有组的无进展生存率为 58.3%,无髓外骨髓瘤患者的无进展生存率为 79.1%。血液学毒性是最常见的不良事件;70.6% 的患者出现 1 级或 2 级细胞因子释放综合征。未观察到免疫效应细胞相关神经毒性综合征。截至截止日期,77.8% 的患者体内可检测到 CAR 转基因。CAR 转基因的中位持续时间为 307.5 天。只有 1 名患者的抗药抗体呈阳性。总而言之,CT103A 对 RRMM 患者安全且活性高,可开发为一种有前途的 RRMM 疗法。之前接受过鼠 BCMA CAR T 细胞疗法但复发的患者仍可能受益于 CT103A。该试验在 http://www.chictr.org.cn 注册为 #ChiCTR1800018137。(Blood . 2021;137(21):2890-2901)