心脏二元组中的离子通道和细胞骨架蛋白在维持兴奋-收缩 (EC) 耦合和提供心脏稳态方面发挥着关键作用。这些二元组蛋白质的功能变化,无论是由遗传、表观遗传、代谢、治疗还是环境因素引起的,都会破坏正常的心脏电生理学,导致异常的 EC 耦合和心律失常。动物模型和异源细胞培养为基础心脏研究提供了阐明心律失常发病机制的平台;然而,这些传统系统并不能真正反映人类心脏电病理生理学。值得注意的是,具有相同遗传性通道病 (ICC) 基因变异的患者通常表现出不完全的外显率和不同的表现度,这强调了建立患者特定疾病模型以理解心律失常的机制途径和确定个性化疗法的必要性。患者特异性诱导多能干细胞衍生的心肌细胞 (iPSC-CM) 继承了患者的遗传背景,并反映了天然心肌细胞的电生理特征。因此,iPSC-CM 为心脏病建模和治疗筛选提供了一个创新且具有转化价值的关键平台。在这篇综述中,我们将研究患者特异性 iPSC-CM 如何在历史上演变为在培养皿中模拟心律失常综合征,以及它们在理解特定离子通道及其功能特征在引起心律失常中的作用方面的实用性。我们还将研究 CRISPR/Cas9 如何实现基于患者独立和变异诱导的 iPSC-CM 的心律失常模型的建立。接下来,我们将研究使用人类 iPSC-CM 进行体外心律失常建模的局限性,这种建模源于 iPSC 的变化或 iPSC 或 iPSC-CM 基因编辑引起的毒性,并探索如何解决这些障碍。重要的是,我们还将讨论新型 3D iPSC-CM 模型如何更好地捕捉体外特征,以及全光学平台如何提供非侵入性和高通量电生理数据,这些数据可用于分层新出现的心律失常变异和药物发现。最后,我们将研究提高 iPSC-CM 成熟度的策略,包括强大的基因编辑和光遗传学工具,这些工具可以在 iPSC-CM 中引入/修改特定离子通道并定制细胞和功能特征。我们预计 iPSC、新型基因编辑、3D 培养和细胞培养的协同作用将在未来几年内实现。
产碳青霉烯酶菌 (CPO) 产碳青霉烯酶菌是高度抗生素耐药性的细菌,可导致难以治疗的感染,在某些情况下,感染对所有可用抗生素都有耐药性。这些细菌会产生一种称为碳青霉烯酶的酶,这种酶可分解卡巴培南类抗生素(一些最有效的抗生素)以及其他抗生素药物。编码碳青霉烯酶产生的基因很容易在细菌之间转移,导致抗生素耐药性感染迅速增加。由于定植患者和感染患者都可以在医疗环境中传播这些生物,因此及时实施接触预防措施和其他感染控制措施对于防止患者之间传播 CPO 至关重要。
抽象目标尽管新辅助免疫化学疗法已被广泛应用于非小细胞肺癌(NSCLC),但预测治疗反应仍然是一个挑战。我们使用预处理多模式CT来探索基于深度学习的免疫化学疗法反应图像生物标志物。方法这项研究回顾性地获得了非对比度增强和对比度增强的NSCLC患者的CT扫描,他们在2019年8月至2023年2月之间在多个中心接受了新辅助免疫化学疗法后接受了手术。深度学习特征是从非对比度增强和对比度增强的CT扫描中提取的,分别构建了预测模型(Lunai-uct Model和Lunai-Ect模型)。在这两种特征的特征融合后,构建了融合模型(Lunai-FCT模型)。使用接收器操作特征曲线(AUC),准确性,灵敏度,特异性,正预测值和负预测值下的区域评估模型的性能。Shapley添加说明分析用于量化CT成像特征对模型预测的影响。为了了解我们的模型如何做出预测,我们采用了梯度加权的类激活映射来产生显着热图。结果培训和验证数据集包括在8:2的中心A的113名患者,测试数据集包括112名患者(中心B n = 73,中心C n = 20,中心D n = 19)。在测试数据集,Lunai-uct,Lunai-ect和Lunai-FCT模型中的AUCS为0.762(95%CI 0.654至0.791),0.797(95%CI 0.724至0.844),和0.866(95%CI 0.866)(95%CI 0.821至0.821至0.821至0.8883)。结论通过从增强对比和非对比度增强的CT中提取深度学习特征,我们构建了Lunai-FCT模型作为成像生物标志物,该标志物可以非侵入性地预测NSCLC新辅助免疫化学治疗中的病理完全反应。
Abstract —We consider the problem of simulating a two- sender multiple access channel (MAC) for fixed product inputs, where each sender transmits a message to the decoder over a rate-limited noiseless link based on its input and unlimited randomness shared with the decoder. As our main contribution, we characterize the one-shot communication cost region via almost-matching inner and outer bounds phrased in terms of the smooth max-information of the channel. The achievability relies on a rejection-sampling algorithm to simulate a quantization channel between each sender and decoder, and producing the final output based on the output of these intermediate channels. The converse follows via information-spectrum based arguments relating operational quantities to information measures. Our one-shot results recover the single-letter asymptotic rate region for MAC simulation with fixed, independent and identically distributed product inputs, that was obtained in [Kurri et al. , IEEE Transactions on Information Theory 68, 7575 (2022)]. We extend our result to quantum-to-classical channels with a separable decomposition [Atif et al. , IEEE Transactions on Information Theory 68, 1085 (2022)], for which we obtain a similar characterization.
扩大基因治疗应用需要可制造的载体,这些载体可以有效地传导人类和临床前模型中的靶细胞。传统的腺相关病毒 (AAV) 衣壳文库选择方法无法在广阔的序列空间中搜索一小部分具有临床转化所必需的多种性状的载体。在这里,我们介绍了 Fit4-Function,这是一种可通用的机器学习 (ML) 方法,用于系统地设计多性状 AAV 衣壳。通过利用均匀采样可制造序列空间的衣壳文库,可以生成可重复的筛选数据来训练准确的序列到功能模型。结合六种模型,我们设计了一个多性状(肝脏靶向、可制造)衣壳文库,并根据所有六个预定标准验证了 88% 的文库变体。此外,仅使用小鼠体内和人类体外 Fit4Function 数据进行训练的模型准确预测了 AAV 衣壳变体在恒河猴中的生物分布。顶级候选物表现出与 AAV9 相当的生产产量、高效的小鼠肝脏转导、高达 1000 倍的人类肝细胞转导以及在恒河猴肝脏转导筛选中相对于 AAV9 的富集度增加。Fit4Function 策略最终使得预测肽修饰 AAV 衣壳的跨物种性状成为可能,并且是组装预测 AAV 衣壳在数十种性状中表现的 ML 图谱的关键一步。
•评估委员会将再次开会,以考虑证据,该评估咨询文件和利益相关者的评论。•在该会议上,委员会还将考虑不是利益相关者的人的评论。•考虑了这些评论后,委员会将准备最终的指导草案。•在利益相关者的任何上诉中,最终指南草案可作为NICE在英格兰NHS中使用Elranatamab的指南的基础。有关更多详细信息,请参阅NICE的健康技术评估手册。
临床试验:在人体中进行的研究,旨在评估医疗、外科或行为干预的有效性和安全性。临床试验可能涉及在食品和药物管理局批准新药之前对人体进行评估。试验可能涉及安慰剂组(非活性“药物”),以查看新药是否比现有治疗更有优势。有些试验是“开放标签”的,所有参与者都知道他们是否正在接受实验性药物。
1个神经肌肉疾病部门,神经病学系,西班牙巴塞罗那市De la Santa Creu I Sant Pau医院; Centro Para larespjitionaciónBioMédicaEnRed Enfermedades Raras(Ciberer),西班牙马德里; 2 Cedars Sinai Medical Center,美国加利福尼亚州洛杉矶; 3德国杜塞尔多夫海因里希海大学医学院神经病学系;悉尼分校,悉尼,澳大利亚,悉尼分校的大脑和思维中心;奥地利维也纳医科大学神经病学系;捷克共和国Olomouc Palacky University Olomouc神经病学系; 4荷兰鹿特丹大学医学中心Erasmus MC; 5赛诺菲研发,美国马萨诸塞州剑桥市神经病学发展; 6美国赛诺菲; 7赛诺菲研发,美国新泽西州布里奇沃特的生物统计学和编程; 8英国伦敦伦敦大学学院UCL皇后广场神经病学研究所
1血液学和雷蒙德·佩雷尔曼(Raymond G. Perelman)蜂窝和分子治疗中心,美国宾夕法尼亚州费城儿童医院; 2哈佛医学院儿科系,以及美国马萨诸塞州波士顿的波士顿儿童医院血液学和肿瘤学系; 3 Spark Therapeutics,Inc。,美国宾夕法尼亚州费城; 4宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州梅尔顿·S·赫尔希医疗中心,血液和血栓形成中心以及血液和血管疾病的医学系; 5澳大利亚维多利亚州墨尔本莫纳什大学澳大利亚血液疾病中心的血栓形成与止血病房和血友病治疗中心; 6美国匹兹堡大学医学系,美国宾夕法尼亚州匹兹堡; 7密西西比州高级医学中心,美国麦迪逊市; 8皇家王子阿尔弗雷德医院的细胞和分子疗法系,以及锡德尼大学医学与健康学院的Gene and Stem Cell疗法计划,澳大利亚新南威尔士州Camperdown,悉尼大学; 9美国密苏里州堪萨斯城UMKC医学院医学系; 10泰国曼谷Mahidol University,Mahidol University,止血和血栓形成部门,医学系;美国北卡罗来纳州教堂山教堂医学院北卡罗来纳大学11号大学; 12血友病治疗计划和加拿大多伦多大学多伦多大学的圣迈克尔医院血友病治疗中心; 13以色列的以色列国家血友病中心和血栓形成研究所,以色列Tel Hashomer; 14佛罗里达大学佛罗里达州盖恩斯维尔大学儿科学系血液学和肿瘤学系
披露:MM报告Amgen,Celgene的Honararia;与自适应生物技术,gsk,爵士制药,Maat Pharma,Novartis,Sanofi和Xenikos一起咨询和咨询角色;以及Amgen,Astellas,Bristol Myers Squibb,Celgene,Pfizer,Stem-Menarini和Takeda的个人费用;并与Janssen,Jazz Pharmaceuticals和Sanofi一起担任演讲者的局职位。si报告了Ono,Celgene/BMS,Takeda,Sanofi和Janssen的Honoraria;来自Ono,MSD,Celgene/BMS,Takeda,Sanofi,Daiichi Sankyo,Janssen,Janssen,Novartis,Alexion,GSK,GSK,Chugai,Otsuka,Otsuka和Astellas-Amgen的研究资金。NJB报告了来自Abbvie,Amgen,Celgene,Genentech/Roche,Gsk,Janssen,Janssen,Karyopharm Therapeutics,Sanofi和Takeda的Honoraria;与Amgen,Celgene,Janssen,Karyopharm Therapeutics,Pfizer,Sanofi和Takeda的咨询和咨询角色;来自Abbvie,Amgen,Celgene,Genentech/Roche,Gsk,Janssen,Karyopharm Therapeutics,Sanofi和Takeda的个人费用;以及Celgene和Janssen的专利,特许权使用费和/或其他知识产权。 SS,UC,EL和AV报告辉瑞公司的就业和股票以及其他所有权。 al报道了来自BMS,Amgen,Janssen,Pfizer,Iteos Therapeutics,Sanofi,Genmab的Honoraria;曾担任Trillium Therapeutics,Pfizer,Genmab,Sanofi,Iteos Therapeutics,BMS,Janssen的咨询或咨询角色;来自Trillium Therapeutics,Sanofi,Janssen,Pfizer,BMS,Genentech/Roche的研究资金。NJB报告了来自Abbvie,Amgen,Celgene,Genentech/Roche,Gsk,Janssen,Janssen,Karyopharm Therapeutics,Sanofi和Takeda的Honoraria;与Amgen,Celgene,Janssen,Karyopharm Therapeutics,Pfizer,Sanofi和Takeda的咨询和咨询角色;来自Abbvie,Amgen,Celgene,Genentech/Roche,Gsk,Janssen,Karyopharm Therapeutics,Sanofi和Takeda的个人费用;以及Celgene和Janssen的专利,特许权使用费和/或其他知识产权。SS,UC,EL和AV报告辉瑞公司的就业和股票以及其他所有权。al报道了来自BMS,Amgen,Janssen,Pfizer,Iteos Therapeutics,Sanofi,Genmab的Honoraria;曾担任Trillium Therapeutics,Pfizer,Genmab,Sanofi,Iteos Therapeutics,BMS,Janssen的咨询或咨询角色;来自Trillium Therapeutics,Sanofi,Janssen,Pfizer,BMS,Genentech/Roche的研究资金。