摘要:耐药性癫痫(DRE)约占癫痫病例的30%,其特征是无法用两种或多种抗癫痫药控制的癫痫发作。患病率估计为每1000人5至10例。传统治疗方法,例如手术切除和神经调节技术,在某些患者中有效,但适用性和不一致的结局。近年来,由于其可能修复神经网络,分泌神经营养因素并调节炎症的潜力,干细胞疗法已成为研究重点。动物模型研究表明,诱导多能干细胞(IPSC)和间质干细胞(MSC)的移植可以降低癫痫发作频率50-80%并改善认知功能。然而,干细胞疗法仍然面临挑战,包括选择细胞来源,移植后存活和功能整合以及长期安全。随着技术和跨学科合作的进步,Stem Cell Therapy有望成为DRE的重要治疗选择,为患者提供了新的希望。
储存和稳定性: 抗抑性 RT-qPCR 预混液采用干冰 / 蓝冰运输。到货后储存于 -20°C 下,以获得最佳稳定性。应避免反复 冻融循环。运输过程中解冻不影响产品性能。每次解冻后应混合 / 平衡溶液以避免分相。 有效期: 在外包装盒标签上的有效期内,在推荐条件下储存并正确处理时,试剂盒可保持完整活性。 安全预防措施: 处理试剂前请阅读并理解 SDS (安全数据表)。首次发货时提供 SDS 的纸质版文件,此后可应要求提 供。 质量控制: Meridian 遵守 ISO 13485 质量管理体系运行。抗抑性 RT-qPCR 预混液及其组分在活性、持续合成能 力、效率、热激活、灵敏度、无核酸酶污染和无核酸污染等方面均经过广泛测试 注: 仅供科研和 / 或进一步生产使用。
原发性膜性肾病 ( primary membranous nephro- pathy , PMN ) 是全球成人肾病综合征常见的病因 , 也是中国原发性肾小球疾病中发病率第二 、 增长 最快的疾病 [ 1 ] 。大多数 PMN 患者有典型的临床表 现 , 包括大量蛋白尿 、 低蛋白血症 、 水肿和高脂血 症等。近 30% 的 PMN 患者能够获得自发缓解 , 但 中危和高危患者 , 即大量蛋白尿 、 肾功能不稳定的 患者 , 缓解的可能性较低 [ 2 ] 。 既往研究表明 , 线粒体功能障碍在急性肾损伤 ( acute kidney injury , AKI ) 和慢性肾脏病 ( chronic kidney diseases , CKD ) 的发病机制和肾脏修复中发 挥关键作用 [ 3 - 4 ] 。线粒体功能与线粒体 DNA ( mito- chondrial DNA , mtDNA ) 的完整性密切相关 , 当线 粒体受损时 , mtDNA 会从线粒体基质释放到细胞 质或细胞外 , 进而激活氧化应激反应 , 并作为炎症 介质激活自然免疫炎症反应 [ 5 ] 。目前多项研究表 明 , 尿 mtDNA 是各种肾脏疾病中线粒体损伤的替 代标志物 [ 6 ] 。我们之前的研究表明 , mtDNA 在尿液 和肾脏组织中容易被检测到 , 其拷贝数与糖尿病肾 脏疾病的肾功能下降和肾脏病理结构改变有关 [ 7 ] 。 另一项研究指出 , 尿液中 mtDNA 与肾功能下降速 度有关 , 并能预测非糖尿病肾脏疾病患者血肌酐翻 倍或需要进行透析治疗的风险 [ 8 ] 。然而 , 尿 mtD- NA 在 PMN 患者中的改变及其对预后的预测作用 仍不明确。本研究旨在探讨尿 mtDNA 与 PMN 患
⑤ 不受著作权限制 ⇩ 著作权侵权的构成要件 = 1) 著作权性 + 2) 依赖性 + 3) 相似性 + 4) 法定使用 - 5) 著作权限制
公共和私人组织都制定了 160 多套不同的人工智能 (AI) 治理原则。这些原则旨在增强 AI 的变革潜力并限制其负面影响。这些原则和策略越来越多地使用“风险管理”作为阐明 AI 技术具体护栏的机制。不幸的是,“风险管理”在实践中的含义在很大程度上是不确定的,而且人们对此知之甚少。事实上,我们衡量风险有两种截然不同的方法。一种方法强调量化和确定性。另一种方法避开了量化的虚假确定性,而是采用通过利益相关者之间的社会和政治对话表达的固有定性(相应不精确)风险衡量标准。本文认为,新兴的人工智能治理领域应该采用更具响应性、包容性和定性的方法,以更好地适应人工智能技术及其社会影响固有的不确定性和动态性。然而,本文还描述了这样做的困难之处,因为计算机科学和数字技术(以及管理这些技术的努力)本质上推动着确定性和消除歧义。本文借鉴了其他科学领域的经验,这些领域长期以来一直在努力解决如何最好地管理新技术的风险,以表明尽管存在不可预测性和不确定性的潜在权衡,定性风险方法如何更好地适应人工智能等新兴技术的挑战。
摘要 我们在 Garfinkle–Horowitz–Strominger (GHS) 膨胀时空的背景下探索了狄拉克场的三部分熵不确定性和真正的三部分量子性。值得注意的是,霍金辐射导致物理可及区域的量子非局域性衰减,同时保持其总相干性。更重要的是,它展示了物理可及区域和物理不可及区域的相干性之间的内在权衡关系。此外,我们研究了霍金辐射对基于熵的测量不确定性的影响,发现更强的霍金辐射会导致物理可及区域的不确定性增加,而物理不可及区域的不确定性降低。因此,我们的研究可能有助于更好地理解弯曲时空中系统的量子性。将相对论与量子信息科学相结合,为理解黑洞的信息悖论提供了新的途径。