Nordhausen / supraregional。EAS Batteries、IoLiTec Ionic Liquids Technologies 和布伦瑞克工业大学的三所研究所联手开发了可持续且经济高效的钠离子电池生产工艺。钠离子技术旨在补充未来的锂离子技术,以经济和生态合理的方式满足日益增长的储能需求。“NaNaBatt”研究项目由联邦教育和研究部资助计划“未来电动汽车、固定式和其他行业相关应用的电池材料 - 电池 2020 转移”(资助代码 03XP0569)资助约 160 万欧元。总金额为 220 万欧元。EAS Batteries 负责协调该研究项目。电池技术:钠离子与锂离子的比较钠离子电池被视为未来有吸引力的存储技术。与关键原材料锂相比,钠的储量十分丰富,而且可以以更环保的方式提取。钠离子电池对环境的实际影响在于其制造过程,例如通过电力和加热需求。这就是“NaNaBatt”项目的用武之地,该项目优化了钠离子电池的生产过程,以创建一种可持续的存储技术,其性能与锂离子电池相当。尽管钠离子电池的相对能量密度低于锂离子电池,但这可以通过大约高出 20% 的电池体积来弥补。未来,钠离子电池将适合用作固定式储能系统和移动应用。它们比锂离子电池具有安全优势,预计未来使用寿命更长,这将大大降低其总体成本。工艺转移:可持续、创新和成本效益高“NaNaBatt”研究项目的目标是在早期阶段将锂离子电池生产中已建立的高效工艺(尤其是其电极)转移到钠离子技术。这种方法将使环保型可充电电池更快地进入市场。所使用的活性材料充足、易于采购且易于回收。结果将以大型圆柱形电池的形式展示,在经过一千次充电和放电循环后,其所谓的“健康状态”应至少达到百分之九十。然后,将在环境绩效评估中分析为创新和环保工艺策略开发的加工技术。该研究项目将持续三年,于 2026 年 10 月 31 日结束。研究结果将确保德国电池生产长期进一步发展。新专业知识将加强德国作为工业基地的地位,开发的产品将开拓新市场。这将创造技术性工作和国际竞争力。字符:3243(包括空格)
摘要:人类可溶性环氧水解酶(SEH)是一种双功能酶,可调节调节性环氧脂质的水平。水解酶活性是由位于宽L形结合位点中心的催化三合会进行的,该催化三合会在两侧都包含两个疏水子沟。在这些结构特征的基础上,可以假定脱溶性是确定该口袋可实现的最大可实现亲和力的主要因素。因此,疏水描述符可能更适合于针对这种酶的新型打击。这项研究研究了在发现新型SEH抑制剂时量子机械衍生的疏水描述符的适用性。到这一末端,通过将静电和空间或疏水性和氢键参数与76个已知的SEH抑制剂结合列表结合使用,或结合静电和疏水性和氢键参数来产生三维定量结构 - 活性关系(3D-QSAR)。然后,通过使用选择的两个外部组(i)对药效团模型进行验证,以对四个不同系列化合物的效力进行排名,(ii)在两种情况下使用从文献中获取的数据集,以将活性物与诱饵区分开。最后,进行了一项前瞻性研究,包括对两个化学文库进行虚拟筛选,以识别新的潜在命中,随后对其对人,大鼠和小鼠SEH的抑制活性进行了实验测试。使用基于疏水的描述符导致六种化合物作为具有IC 50 <20 nm的人类酶的抑制剂,其中两个IC 50值为0.4和0.7 nm。结果支持使用疏水描述子作为搜索新型脚手架的有价值的工具,该工具编码了与目标结合位点互补的适当的亲水/疏水分布。■简介
摘要 结直肠癌 (CRC) 是全球第三大最常见的癌症类型,在癌症相关死亡人数中排名第二。就目前的治疗方法而言,尚未提出一种明确、安全且有效的 CRC 治疗方法。然而,新的药物输送系统在这一领域显示出良好的前景。基于两亲性环糊精的纳米载体是一种创新且有趣的制剂方法,可通过口服给药靶向结肠。在我们之前的研究中,旨在对结肠肿瘤进行口服化疗,并通过配方开发研究、粘蛋白相互作用、粘液渗透、细胞毒性和二维细胞培养中的渗透性,以及在早期和晚期结肠癌模型中的体内抗肿瘤和抗转移功效以及单剂量口服给药后的生物分布获得了有希望的结果。本研究旨在进一步阐明口服喜树碱 (CPT) 负载两亲性环糊精纳米粒子在局部治疗结直肠肿瘤方面的药物释放行为和在三维肿瘤模型中的功效,以预测不同纳米载体的体内功效。主要目的是在配方开发与体外阶段和动物研究之间架起一座桥梁。在这种情况下,CPT 负载的聚阳离子-β-环糊精纳米粒子分别导致小鼠和人类 CT26 和 HT29 结肠癌球体肿瘤细胞活力降低。此外,首次通过释放动力学模型对释放曲线(新型药物输送系统中关键质量参数之一)进行了数学研究。总体研究结果表明,通过带正电荷的聚-β-CD-C6 纳米粒子将抗癌药物(如 CPT)口服靶向至结肠肿瘤以实现局部和/或全身疗效的策略是一种很有前途的方法。
目标。紫杉醇诱导的周围神经病(PIPN)是紫杉醇的令人衰弱的,很难进行治疗的侧面。可溶性环氧化物水解酶(SEH)可以迅速将内源性抗炎介质的环氧化脱烯酸(EET)代谢为二羟基二酸酯。TIS研究旨在评估SEH抑制剂N-(1-(1-氧化)-4-磷酸胺] -n' - (三氟甲氧基)苯基)-UREA(TPPU)在大鼠PIPN中起关键作用,并为治疗提供了新的治疗目标。方法。建立了由NAB-列甲赛诱导的PIPN的Sprague-Dawley雄性大鼠模型。大鼠随机分为对照组,NAB-列甲赛组和Nab-Paclitaxel + TPPU(SEH抑制剂)组,每个组中有36只大鼠。检测到SEH抑制剂TPPU对行为测定,凋亡,神经胶质激活,轴突损伤,微结构以及血脊髓屏障的渗透性,并通过检查NF-κB信号通道的表达来探索基本机制。结果。Te results showed that the mechanical and thermal pain thresholds of rats were decreased after nab-paclitaxel treatment, accompanied by an increased expression of axonal injury-related proteins, enhanced cell apoptosis, aggravated destruction of vascular permeability, intense glial responses, and elevated in- fammatory cytokines and oxidative stress in the L4-L6 spinal cord.tppu通过抑制SEH和NF-κB信号通路的激活,通过降低杀菌性细胞因子的水平和氧化应激来解释PIPN。结论。TPPU通过增加紧密连接蛋白的表达来恢复机械和热阈值,减少细胞凋亡,减少轴突损伤和神经胶质反应以及保护血管通透性。tese fndings支持SEH在PIPN中的作用,并表明SEH的抑制代表了PIPN的潜在新治疗靶标。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
美国陆军工程兵团巴尔的摩地区和德特里克堡正在为马里兰州德特里克堡的蒸汽灭菌厂更换项目准备环境评估 (EA)。环境评估草案可供公众和机构审查,如下所示。为应对 COVID-19 疫情,当地图书馆不提供环境评估草案的印刷版。相反,所有材料均可在德特里克堡网站 https://home.army.mil/detrick/ 上找到,方法是单击页面左侧的“环境/NEPA 文件”,或通过以下链接获取:https://home.army.mil/detrick/index.php/about/Garrison/directorate-public-works/environmental-management-division 项目文件也可以在项目网站的以下链接中找到:https://www.nab.usace.army.mil/SSP/ 我们请求您在收到此信函后 30 天内对德特里克堡蒸汽灭菌厂更换的环境评估草案进行审核并提出书面意见。如果您无法在线访问文档或有任何疑问,请发送信息请求至 Detrick_SSP_EA@usace.army.mil。欢迎有兴趣的各方通过邮寄方式向美国陆军部、美国陆军设施 PAO、810 Schreider St、Suite 100、Fort Detrick、Maryland 21702 或通过电子邮件向 Detrick_SSP_EA@usace.army.mil 提交意见。或者,您也可以在正常工作时间(周一至周五上午 8:00 至下午 4:00)致电 Fort Detrick,电话 301-619-2018,获取有关环境评估草案和环境审查的更多信息。
尽管通过经皮冠状动脉介入治疗和药物治疗的发展,心肌梗死的预后已经得到改善,但心肌梗死仍然是一种危及生命的疾病。此外,心肌梗死后因重塑而导致的心力衰竭需要终生管理。本研究的目的是开发一种抑制心肌梗死造成的心肌损伤的新型治疗方法。我们专注于抑制可溶性环氧化物水解酶,以延长具有血管扩张和抗炎特性的环氧二十碳三烯酸的活化。我们成功地制造了一种新型疫苗来灭活可溶性环氧化物水解酶,并评估了该疫苗在大鼠心肌梗死模型中的效果。在接种疫苗的组中,缺血面积显著减少,心脏功能得到显著保留。疫苗治疗明显增加了边界区域的微血管,并抑制了心肌梗死继发的纤维化。这种可溶性环氧化物水解酶疫苗是改善心肌梗死后心脏功能的一种新治疗方法。
作者分支机构:纽约市城市大学生物科学系,纽约市亨特学院(艾哈迈德);加利福尼亚州斯坦福大学斯坦福大学医学院流行病学和人口健康系(Vengalasetti);加利福尼亚大学旧金山分校的流行病学和生物统计学系,旧金山(哈斯拉姆,普拉萨德);加州大学旧金山大学医学系,旧金山(Prasad)。