随着电化学阻抗谱 (EIS) 社区越来越多地采用 impedance.py(Murbach 等人,2020 年)作为开源软件工具,nleis.py 是 impedance.py 的一个工具箱,旨在提供一种易于访问的工具来执行二次谐波非线性 EIS (2nd-NLEIS) 分析,并能够在未来扩展到更高的谐波分析。该工具箱在设计时考虑了 impedance.py,以最大限度地缩短用户的学习曲线。它继承了 impedance.py 的基本功能,引入了成对的线性和二次谐波非线性电路元件,并能够同时分析 EIS 和 2nd-NLEIS。使用此工具箱,可以选择单独分析 EIS 或 2nd-NLEIS 光谱,或者使用 impedance.py 工作流程同时对线性和非线性阻抗数据进行参数估计。最终,随着采用的增长,nleis.py 工具箱将被集成到impedance.py中,同时保留nleis.py的独立版本作为平台,以便在该领域成熟时开发高级功能。
•800-MA电动路径线性电池充电器 - 3.0-V至5.9V输入电压操作范围优化了电池到电池充电和USB适配器的优化 - 25-V耐受的输入电压 - 可配置的电池调节电压,可配置的电池调节电压,0.5%的精度为3.6 V至4.65 V到4.65 V toce-55 mV toce-55 ma tody-5-ma至800-ma至800-ma to – 800-ma to – 800-ma to – 800-ma to – 800-ma to – 800 ma to – 800-ma, 2.5-A discharge current to support high system loads – Configurable termination current down to 0.5 mA – Configurable NTC charging profile thresholds including JEITA support – Power cycle and advanced reset mechanisms to recover system • Power path management for powering the system and charging the battery – Regulated system voltage (SYS) ranging from 4.4 V to 4.9 V in addition to battery voltage tracking and input pass-though options – Configurable input current limit – Selectable adapter or battery power for system – Dynamic power path management optimizes charging from weak adapters • Ultra low quiescent current modes – 30-nA Shutdown mode – 3.2-μA Ship mode with button press wake – 4 μA in Battery Only mode – 45-μA input adapter Iq in Sleep mode • One push-button wake-up and reset input • Integrated fault protection – Input overvoltage protection (V IN_OVP ) – Battery undervoltage protection (V BUVLO ) – Battery short protection (BATSC) – Battery overcurrent protection (BATOCP) – Input current limit protection (ILIM) – Thermal regulation (TREG) and thermal shutdown (TSHUT) – Battery thermal fault protection (TS) – Watchdog and safety timer fault – System short protection – System overvoltage protection
摘要生成氢,通过碱性水电解显示出有望作为能源的希望。本评论探讨了选择电极和评估催化剂以提高氢产生的效率和性能的重要意义。它总结了与碱性电解反应有关的激活能量和损失,强调了电极材料和催化剂的必要性。审查还涉及诸如电力消耗和基于铂金属的电催化剂之类的挑战,该催化剂提出了各种电极材料和催化剂,具有较高的活性和氢生产的选择性。此外,它讨论了促进副产品与氢气分离的电解细胞设计。该研究表明,在10、500和1000 mA·Cm -2时,势较低,较低的70、318和361 mV,NIOX/NF表现出强烈的碱氢的演化活性,从而在碱性HER中表现出色。此外,它概述了碱性水电解技术的进步,该技术着重于提高效率和降低与电力消耗相关的运营成本。总体而言,本综述强调了选择电极和评估催化剂在优化碱性水电产生中的作用。
鉴于这些限制,电力电子器件多年来不断发展,体积小、功率密度高,在极端温度环境和大热循环中具有额外的运行优势。因此,研究人员正在努力开发有效的热系统以提高其可靠性。例如,随着以宽带隙半导体为中心的研究的发展,氧化镓 (Ga 2 O 3) 已发展成为半导体技术发展的前沿。这种材料具有良好的固有特性,即临界场强、广泛可调的电导率、迁移率和基于熔体的块体生长,被广泛用于高性能电力电子器件,有望成为硅基功率器件的替代品。这种材料具有一系列直到最近才在一个系统中观察到的特性。这些特性包括:低热导率。最后,β-Ga 2 O 3 具有近 5 eV 的超宽带隙(Green 等人,2022 年)。因此,在不久的将来,SiC 很有可能被 Ga2O3 取代。氧化镓(III),通常称为氧化镓,已成为电力电子设备的新型半导体材料。另一项新发现是氮化镓(GaN)。GaN 具有高电子迁移率的吸引人的特性,可实现高开关迁移率。此外,金刚石具有高开关性能、高温操作、辐射硬度、高输出功率,并且可以合成用于电子设备(Javier 等人,2021 年)。
静电储能电容器是电力电子器件必不可少的无源元件,由于电介质陶瓷能够在 > 100 ˚C 的温度下更可靠地工作,因此优先选择电介质陶瓷而不是聚合物。大多数工作集中在非线性电介质组合物上,其中极化 (P)/电位移 (D) 和最大场 (E max ) 经过优化,以提供能量密度值 6 ≤ U ≤ 21 J cm − 3 。然而,在每种情况下,P 的饱和 (dP/dE = 0,AFE) 或“部分”饱和 (dP/dE → 0,RFE) 都会限制在击穿前可以达到的 U 值。通过设计高介电常数准线性电介质 (QLD) 行为,dP/dE 保持恒定直至超高 E max ,可以进一步改善 U 相对于弛豫器 (RFE) 和反铁电体 (AFE) 的程度。 QLD 多层电容器原型的介电层由 0.88NaNb 0.9 Ta 0.1 O 3 - 0.10SrTiO 3 -0.02La(Mg 1/2 Ti 1/2 )O 3 组成,室温下 U ≈ 43.5 J cm − 3 ,支持极大的 E max ≈ 280 MV m − 1 ,对于基于粉末流延技术的设备,这两项性能均超过了当前最先进的水平两倍。重要的是,QLD 电容器在高达 200 ˚ C 的温度下 U ( ≈ 15 J cm − 3 ) 变化很小,并且具有强大的抗循环降解能力,为可持续技术的开发提供了一种有前途的新方法。
• 集成 1A 电源路径线性电池充电器 – 输入电压工作范围为 3.0V 至 18.0V – 输入电压最高可耐受 25V – 可配置电池调节电压,精度为 ±0.5%,范围为 3.5V 至 4.65V,步长为 10mV – 5mA 至 1A 可配置快速充电电流 – 55mΩ BATFET 导通电阻 – 高达 2.5A 的放电电流,可支持高系统负载 – 完全可编程的 JEITA 配置文件,可在整个温度下安全充电 • 用于为系统供电和为电池充电的电源路径管理 – 除电池电压跟踪和输入直通选项外,调节系统电压范围为 4.4V 至 4.9V – 可配置的输入电流限制 – 动态电源路径管理可优化弱适配器的充电 – 可选择适配器或电池为系统供电 – 先进的系统复位机制 • 超低静态电流模式 – 电池模式下电池静态电流为 2μA – 运输模式下电池静态电流为 15nA •集成降压转换器,具有 I 2 C 和 GPIO 可编程 DVS 输出 – 系统静态电流为 0.36μA – 输出电压为 0.4V 至 1.575V,步长为 12.5mV 或输出电压为 0.4V 至 3.6V,步长为 25mV/50mV – 输出电流高达 600mA • 集成降压-升压转换器,具有 I 2 C 可编程 DVS 输出 – 系统静态电流为 0.1μA – 输出电压为 1.7V 至 5.2V,步长为 50mV – V SYS ≥ 3.0V、V BBOUT = 3.3V 时输出电流高达 600mA • 集成 I 2 C 可编程 LDO(LDO1 和 LDO2) – 静态电流为 25nA – 输出电压为 0.8V 至 3.6V,步长为 50mV – 输出电流高达 200mA – LDO1 可在运输模式下保持开启– 可配置 LDO 或旁路模式 – 专用输入引脚 • 集成故障保护以确保安全 – 输入电流限制和过压保护
威尔士将于 2025 年 6 月 1 日禁止供应一次性电子烟,这将与英格兰、苏格兰和北爱尔兰于 2025 年出台的禁令保持一致。一次性电子烟电子烟是一种电池供电的设备,可加热液体(通常为尼古丁,但也有不含尼古丁的液体)以产生可吸入的气雾。电子烟以可重复使用和一次性两种形式出售,后者被归类为既不可充电也不可再填充,在电量耗尽或电子液体耗尽后就会被丢弃。一次性电子烟通常已填充 2 毫升电子液体(约 600 口)和最多 2% 的尼古丁。我们的立法只禁止一次性电子烟,包括尼古丁和不含尼古丁两种版本。可重复使用的电子烟将继续可用。我们出台立法是为了解决大量生产和不当处置一次性电子烟所带来的环境问题。 主要目标 - 解决环境问题 一次性电子烟越来越受欢迎,尤其是在年轻人中,这导致产生的废物量和制造这些产品所用的资源大幅增加。 随后,人们越来越担心它们对环境的影响。 2023 年,Material Focus 的研究估计,英国每周有超过 500 万支一次性电子烟被乱扔或被扔进一般垃圾中,几乎是前一年数量的四倍。 只有 17% 的受访者表示他们会回收利用自己的电子烟。 一次性电子烟被乱扔时,会将塑料、尼古丁盐、重金属、铅、汞和易燃锂离子电池带入自然环境。 这些化学物质最终会污染水道和土壤,还会对野生动物产生毒性和破坏性。 乱扔的塑料外壳会磨成有害的微塑料。保持威尔士整洁 (KWT) 开展的调查发现,我们环境中一次性电子烟的数量急剧上升。2023/24 年间,威尔士 10.2% 的街道上发现了一次性电子烟,估计我们的街道上一次散落的电子烟数量高达 6700 支。
• 1A 线性电池充电器 – 3.0V 至 18V 输入电压工作范围,适用于电池到电池充电、USB 适配器和高阻抗源。 – 可配置电池调节电压,精度为 0.5%,范围为 3.6V 至 4.65V,步长为 10mV – 支持锂离子、锂聚合物和磷酸铁锂化学成分 – 5mA 至 1A 可配置快速充电电流 – 55mΩ 电池 FET 导通电阻 – 高达 3A 的放电电流,可支持高系统负载 – 可配置 NTC 充电配置文件阈值,包括 JEITA 支持 • 电源路径管理,用于为系统供电和为电池充电 – 除电池电压跟踪外,调节系统电压 (SYS) 的范围为 4.4V 至 5.5V – 适用于高阻抗输入源的电池跟踪输入电压动态电源管理 (VINDPM)
获取占有权——已完成 100% 地方政府支持解决方案——已完成 100% 进行 SIS/DIS——已完成 100% 向 NGA 认可——已完成 100% 财务结算——已完成 85% EPC 采购——已完成 100% 保和太阳能公司可再生能源项目。 Ubay, Bohol Bohol VII 17.500 2023 年 12 月 2024 年 6 月 巴科洛德太阳能发电项目 Solar Negros PH Solar Inc.巴科洛德市和 Brgy。塔布南,巴戈市 西内格罗斯省 NIR 130.050 2024 年 7 月 2024 年 8 月 圣米格尔太阳能发电项目 太阳能 Sunpalo Solar Energy Inc.圣米格尔,莱特省 莱特 VIII 80.000 2024 年 9 月 2024 年 12 月 NGCP 的 138 kV Babatngon 变电站 Vista Alegre 太阳能发电项目 Solar Amatera 可再生能源公司 巴科洛德市,西内格罗斯省 西内格罗斯省 NIR 41.600 2024 年 10 月 太阳能发电项目 2025 年 1 月 您 Al Sol, Inc.加的斯市, 西内格罗斯省 西内格罗斯省 NIR 56.000 2025 年 3 月 2025 年 5 月 SAGAY SOLAR ON WATER PV POWER PLANT 太阳能 LAKESUNENERGY INC.萨盖市, 西内格罗斯省 西内格罗斯省 NIR 101.200 2026 年 6 月 2026 年 9 月
请注意:本数据表中的规格和信息可能未涵盖特定应用产生的所有特殊要求。因此,它们不构成产品特性的全面描述。OPKON 对因不当使用我们的产品而造成的损害不承担任何责任。用户有责任确保所使用的产品适合自己的应用。