马斯洛格水力发电项目 Hydro Iraya 能源公司 Maslog,东萨马省 东萨马省 VIII 40.000 2028 2028 卡萨帕河水力发电项目 Hydro ReliantHydro Power Corp.马斯洛格,东萨马岛 东萨马岛 VIII 10.000 2029 2029 阿克兰抽水蓄能水电项目 水电战略电力开发公司马来亚克兰省 阿克兰省 VI 300.000 2030 2030 下布希德水力发电项目 水电布希德水能公司 马伊多隆省 东萨马省 东萨马省 VIII 20.000 2033 2033 生物质 0.000 太阳能 2035 绿色太阳能项目 Bili E. rgy, Inc.比利兰,比利兰比利兰 VIII 20.000 2024 年 9 月 2024 年 12 月取得占有权 - 100% 完成圣米格尔太阳能发电项目太阳能 Sunpalo Solar Energy Inc.圣米格尔,莱特岛 莱特 VIII 80.000 2024 年 9 月 2024 年 12 月 NGCP 的 138 kV Babatngon 变电站 加的斯市太阳能发电项目 Solar Puente Al Sol, Inc.加的斯市,西内格罗斯省西内格罗斯省 NIR 56.000 2025 年 3 月 2025 年 5 月维多利亚太阳能发电项目太阳能维多利亚绿色能源公司。维多利亚城,西内格罗斯省西内格罗斯省 NIR 85.925 2026 年 10 月 2026 年 11 月 保和太阳能发电项目 太阳能 保和可再生能源公司Ubay, Bohol Bohol VII 17.500 2023 年 12 月 2024 年 6 月 Manapla 太阳能发电项目 太阳能维多利亚绿色能源公司。马纳普拉,西内格罗斯省西内格罗斯省 NIR 120.295 2026 年 10 月 2026 年 11 月 巴科洛德太阳能发电项目太阳能 Negros PH Solar Inc.巴科洛德市和 Brgy。塔布南,巴戈市,西内格罗斯省, NIR 130.050 2024 年 7 月 2024 年 8 月 Vista Alegre 太阳能发电项目 Solar Amatera 可再生能源公司 巴科洛德市,西内格罗斯省,西内格罗斯省, NIR 41.600 2024 年 10 月 2025 年 1 月 太阳能发电项目 All Solar Homes Inc.西内格罗斯省、巴科洛德、曼达兰西内格罗斯省 NIR 0.240 2026 年 12 月 2026 年 12 月
Ilog 水力发电项目 水电 Phinma 能源公司,马比奈,东内格罗斯省 东内格罗斯省 NIR 21.600 2027 2027 Bago 3 水力发电项目 水电 Alsons 能源开发公司 穆尔西亚和萨尔瓦多贝内迪克托,西内格罗斯省 西内格罗斯省 NIR 15.000 2027 2027 Maslog 水力发电项目 水电 Iraya 能源公司 Maslog,东萨马省 东萨马省 VIII 40.000 2028 2028 Casapa 河水力发电项目 水电 ReliantHydro 电力公司 Maslog,东萨马省 东萨马省 VIII 10.000 2029 2029 阿克兰抽水蓄能水力发电项目 水电 Strategic 电力开发公司 马莱,阿克兰省 阿克兰省 VI 300.000 2030 2030 下布希德水力发电项目 水电 布希德水能Corporation Maydolong,东萨马省 东萨马省 VIII 20.000 2033 2033 生物质 0.000 太阳能 2,152.137
2D半导体可以推动量子科学和技术的进步。但是,它们应该没有任何污染。同样,相邻层及其电子特性的晶体学排序和耦合应具有良好的控制,可调且可扩展。在这里,这些挑战是通过一种新方法来解决的,该方法结合了分子束外延和原位带工程在石墨烯上半导体硒化(GASE)的超高真空中。通过电子差异,扫描探针显微镜和角度分辨的光电子光谱法表明,在层平面中与基础与石墨烯的下层晶格相对的原子研究表明,GASE的原子薄层对齐。GASE/石墨烯异质结构(称为2semgraphene)具有GASE的中心对称性(组对称性D 3D)多晶型物,GASE/Chapeene界面处的电荷偶极子,以及可通过层厚度调谐的带结构。新开发的可伸缩2秒封装用于光学传感器,该传感器利用光活动Gase层和与石墨烯通道的接口处的内置电势。此概念证明具有进一步的进步和设备体系结构,将2semgraphene作为功能构建块。
如果您想完成所有模块,则可以这样做。如果您完成所有模块,则可以获得证书。要查看您的证书,请单击课程页面上每个模块下拉列表下的证书图块。仅一旦所有模块都将所有模块标记为“完成”,并且已达到通行证等级
doi:https://dx.doi.org/10.30919/es1178基于pt@r-go@mwcnts ternary nanocomposites修饰电极Y. Bakytkarim,bakytkarim,1,1,1,#S。tursynbolat,#ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 Z.S. Mukatayeva,1,* ye。Tileuberdi,1 N.A.Shadin,1 ZH.M. Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。 电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。 使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。 由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。 在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。 此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。Shadin,1 ZH.M.Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。
多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
• 考虑空间和时间因素及耦合,共同优化能源存储、发电和传输容量 • 跨数十年优化而非顺序决策 • 随机规划公式考虑技术成本、净需求和停电不确定性 • 先进的能源存储建模(如电池退化) • 与多部门动态建模(GCAM、TELL)兼容,涉及模型间数据集交换和维护的处理和自动化脚本 • 改进的传输流约束建模(如管道流、直流近似),涵盖各种传输技术(交流、直流点对点、多终端直流) • 增强的容量信用建模——考虑随着渗透率的提高可再生能源容量信用的下降 • 分解技术和并行计算应用解决计算可处理性挑战
摘要:二维(2D)范德华异质结合了单个2D材料的独特特性,导致超材料,非常适合新兴的电子,光电,光电和自旋形成现象。在利用这些特性用于未来的混合电路方面的一个重大挑战是它们的大规模实现并集成到石墨烯互连中。在这项工作中,我们证明了二硫化钼(MOS 2)晶体在图案化石墨烯通道上的直接生长。通过通过限制的空间化学蒸气沉积生长技术增强对蒸气转运的控制,我们实现了单层MOS 2晶体在单层石墨烯上的优先沉积。原子分辨率扫描透射电子显微镜揭示了杂结构的高结构完整性。通过深入的光谱表征,我们在石墨烯/MOS 2中揭示了电荷转移,MOS 2将p-型掺杂到石墨烯中,如我们的电气测量所证实。光电导率表征表明,可以在MOS 2层覆盖的石墨烯通道中局部创建光活性区域。时间分辨超快的超快瞬态吸收(TA)光谱揭示了在石墨烯/MOS 2异质结构中加速的电荷衰减动力学,对于以下带隙激发条件的上转换。我们的概念验证结果为范德华异质结构电路的直接增长铺平了道路,对超快光活性纳米电子和播客应用具有重要意义。关键字:石墨烯,TMD,现场效应晶体管,范德华异质结构,超快,光活动电路■简介
取得占有权——100%完成地方政府部门支持决议——100%完成 SIS/DIS 的实施——100%完成向 NGA 认可——100%完成财务结算——85%完成 EPC 采购——100%完成维多利亚太阳能电力公司维多利亚绿色项目。维多利亚城,西内格罗斯 VI 85.925 2023 年 12 月 2024 年 3 月 Manapla 太阳能发电项目 太阳能维多利亚绿色能源公司马纳普拉,内格罗斯西 VI 120.295 2023 年 12 月 2024 年 3 月 保和太阳能发电项目 太阳能 保和可再生能源公司Ubay, Bohol VII 17.500 2023 年 12 月 2024 年 6 月 巴科洛德太阳能发电项目 Solar Negros PH Solar Inc.巴科洛德市和 Brgy。塔布南,巴戈市 VI 130.050 2024 年 7 月 2024 年 8 月 圣米格尔太阳能发电项目 太阳能 Sunpalo Solar Energy Inc.圣米格尔,莱特岛 VIII 80.000 2024 年 9 月 2024 年 12 月 NGCP 麦德林太阳能发电厂 138 kV Babatngon 变电站 太阳能 太阳能菲律宾商业屋顶项目公司麦德林,宿务 VII 240.000 2024 年 11 月 2024 年 12 月 加的斯市太阳能发电项目 Solar Puente Al Sol, Inc.加的斯市,西内格罗斯省 VI 56.000 2024 年 11 月 2024 年 12 月 Vista Alegre 太阳能发电项目 Solar Amatera 可再生能源公司 巴科洛德市,西内格罗斯省 VI 41.600 2024 年 10 月 2025 年 1 月
理想情况下,消除焊接的夹具设计将很快开发,这与预期的过渡到无线电池管理系统(BMS)一致。通过为每个单元格配备无线芯片,OEM可以访问详细的充电数据以进行预测性维护。与当前的焊接电池连接不同,这需要破坏性的流程进行细胞更换,夹子互连提供了单细胞可用性。他们使OEM能够替换单个单元,从而将包装的成本从最高$ 20K降低到单个细胞更换的$ 200。