实现对实际应用的高灵敏度一直是可穿戴柔性压力传感器的主要发育方向之一。本文引入了激光斑点灰度光刻系统和一种新的方法,用于使用颗粒状激光斑点图案制造随机锥形阵列微观结构。其可行性归因于激光斑点强度的自相关函数,该功能遵循第一类的一阶Bessel函数。通过客观的斑点尺寸和暴露剂量操纵,我们开发了具有各种微形态的微结构光蛋白天。这些微结构用于形成用于柔性电容压力传感器中的聚二甲基硅氧烷微结构电极。这些传感器表现出超高灵敏度:低压范围为0 –100 pa的19.76 kPa -1。它们的最小检测阈值为1.9 pa,它们保持稳定性和弹性超过10,000个测试周期。这些传感器被证明擅长捕获生理信号并提供触觉反馈,从而强调其实际价值。
b'abstract:与乙烯基连接的二维聚合物(V-2DPS)及其层堆叠的共价有机框架(V-2D COF)具有高平面内\ XCF \ XCF \ x80-Conjugation和Robobs框架的能量候选候选者。但是,当前的合成方法仅限于产生缺乏加工性的V-2D COF粉末,阻碍了它们进入设备,尤其是在依赖薄膜的膜技术中。在此,我们报告了通过knoevenagel多凝结的乙烯基链接阳离子2DPS膜(V-C2DP-1和V-C2DP-2)的新型水上表面合成,可作为高度可逆且基于耐用锌的Dual-iro-ion patchies(Zdibs)的阴离子选择性电极(作为阴离子)。模型反应和理论建模揭示了水面上knoevenagel反应的反应性和可逆性的增强。在此基础上,我们证明了对V-C2DPS膜的水表面2D多浓度,该膜显示出较大的侧向尺寸,可调厚度和高化学稳定性。代表性地,V-C2DP-1作为完全结晶和面向面的膜,具有A = B 43.3 \ XC3 \ X85的平面晶格参数。从定义明确的阳离子位点,定向的1D通道和稳定的框架中获利,V-C2DP-1膜具有优质的Bis(Trifluoromethanesulfonyl)Imide阴离子(TFSI)inImide(TFSI) - 转移率(T_ = 0.85),用于高空ZDIBS,从而在高空zdibs中进行transpertion andercation transportive and-Interc Zdib and Fratsion trande trander-dranscation-intrance zdib and。促进其特定能力(从〜83到124 mahg 1)和骑自行车寿命(> 1000个循环,能力保留95%)。
这项工作通过开发氟化和塑性晶体嵌入弹性电解质 (F-PCEE) 展示了固态锂金属电池 (LMB) 的低温操作。F-PCEE 是通过聚合物基质和塑性晶体相之间的聚合诱导相分离形成的,在 -10°C 时提供高机械应变 (≈ 300%) 和离子电导率 (≈ 0.23 mS cm − 1)。值得注意的是,两相之间的强相分离导致锂 (Li) 盐在塑性晶体相内的选择性分布,从而实现低温下优异的弹性和高离子电导率。 Li/LiNi 0.8 Co 0.1 Mn 0.1 O 2 全电池中的 F-PCEE 在 -10 °C 和 -20 °C 下分别保持 74.4% 和 42.5% 的放电容量,而 25 °C 下则相反。此外,全电池在 -10 °C 下经过 150 次循环后容量保持率为 85.3%,截止电压高达 4.5 V,是已报道的低温 LMB 固体聚合物电解质中循环性能最高的之一。这项工作将 F-PCEE 在 -10 °C 下延长的循环寿命归因于其出色的机械稳定性以抑制锂枝晶的生长和形成优异的富 LiF 中间相的能力。这项研究建立了弹性电解质的设计策略,用于开发在低温和高电压下工作的固态 LMB。
取得占有权——已完成 100% 地方政府部门支持决议——已完成 100% 执行 SIS/DIS——已完成 30% 向 NGA 认可——已完成 100% 财务结算——已完成 65% EPC 采购——已完成 50% 维多利亚太阳能发电项目维多利亚绿色能源公司。维多利亚城,西内格罗斯 VI 85.925 2023 年 12 月 2024 年 3 月 Manapla 太阳能发电项目 太阳能维多利亚绿色能源公司马纳普拉,内格罗斯西 VI 120.295 2023 年 12 月 2024 年 3 月 保和太阳能发电项目 太阳能 保和可再生能源公司Ubay, Bohol VII 17.500 2023 年 12 月 2024 年 6 月 巴科洛德太阳能发电项目 Solar Negros PH Solar Inc.巴科洛德市和 Brgy。塔布南,巴戈市 VI 130.050 2024 年 7 月 2024 年 8 月 圣米格尔太阳能发电项目 太阳能 Sunpalo Solar Energy Inc.圣米格尔,莱特岛 VIII 80.000 2024 年 9 月 2024 年 12 月 NGCP 麦德林太阳能发电厂的 138 kV Babatngon 变电站 太阳能 菲律宾商业屋顶项目 麦德林,宿务 VII 240.000 2024 年 11 月 2024 年 12 月 Cadi Al City 太阳能发电项目、Al Puente 太阳能发电项目。加的斯市,西内格罗斯省 VI 56.000 2024 年 11 月 2024 年 12 月 Vista Alegre 太阳能发电项目 Solar Amatera 可再生能源公司 巴科洛德市,西内格罗斯省 VI 41.600 2024 年 10 月 2025 年 1 月
umuagwo,P.M。B.1038,,尼日利亚尼日利亚IMO州OWERRI,尼日利亚大学物理与天文学系,尼日利亚大学,尼日利亚大学,410001,尼日利亚埃努古州,c c c Q Quaid-i-Azam大学,伊斯兰堡Quaid-i-Azam大学中心,伊斯兰堡44000,44000 University, Xi'an, 710072, China e UKM-NCP Joint Research and Development Center, Universiti Kebangsaan Malaysia, Lingkungan Ilmu, 43600 Bangi, Selangor, Malaysia f Institute of Microengineering and Nanoelectronics (IMEN)-Center of Excellence in Physics (CoE Physics), Quaid-i-Azam University, Islamabad, 44000,巴基斯坦G纳米科学非洲网络(Nanoafnet)Ithemba Labs-intional Research Foundation,萨默塞特西部7129,旧福雷路1号 Box 722,Somerset West,Somerset West,Western Cape Province,南非H UNESCO-UNISA非洲纳米科学/纳米技术主席,南非大学(UNISA)研究生学院(UNISA),Muckleneuk Ridge,P.O。 Box 392,Pretoria,Pretoria,南非I I IMO理工大学的物理系,尼日利亚IMO州OWERRI,IMO州J.,尼日利亚尼日利亚IMO州OWERRI,尼日利亚大学物理与天文学系,尼日利亚大学,尼日利亚大学,410001,尼日利亚埃努古州,c c c Q Quaid-i-Azam大学,伊斯兰堡Quaid-i-Azam大学中心,伊斯兰堡44000,44000 University, Xi'an, 710072, China e UKM-NCP Joint Research and Development Center, Universiti Kebangsaan Malaysia, Lingkungan Ilmu, 43600 Bangi, Selangor, Malaysia f Institute of Microengineering and Nanoelectronics (IMEN)-Center of Excellence in Physics (CoE Physics), Quaid-i-Azam University, Islamabad, 44000,巴基斯坦G纳米科学非洲网络(Nanoafnet)Ithemba Labs-intional Research Foundation,萨默塞特西部7129,旧福雷路1号Box 722,Somerset West,Somerset West,Western Cape Province,南非H UNESCO-UNISA非洲纳米科学/纳米技术主席,南非大学(UNISA)研究生学院(UNISA),Muckleneuk Ridge,P.O。 Box 392,Pretoria,Pretoria,南非I I IMO理工大学的物理系,尼日利亚IMO州OWERRI,IMO州J.Box 722,Somerset West,Somerset West,Western Cape Province,南非H UNESCO-UNISA非洲纳米科学/纳米技术主席,南非大学(UNISA)研究生学院(UNISA),Muckleneuk Ridge,P.O。Box 392,Pretoria,Pretoria,南非I I IMO理工大学的物理系,尼日利亚IMO州OWERRI,IMO州J.Box 392,Pretoria,Pretoria,南非I I IMO理工大学的物理系,尼日利亚IMO州OWERRI,IMO州J.
软体机器人领域发展迅速,其目标是创造出机械柔顺性更强、功能更全、与人类交互更安全的机器人 [1]。为了实现这一目标,研究人员开发出了与传统机器人部件类似的柔性部件,用于传感 [2]、[3]、驱动 [4] 和计算 [5]。一部分软体机器人利用电磁力实现驱动 [6]–[8]。许多研究人员将磁性粒子嵌入有机硅弹性体中,制成可通过外部磁场 [9]–[12] 或局部磁场 [13]、[14] 驱动的软磁复合材料。Kohls 等人设计了一种带有液态金属线圈和软磁复合材料的软电磁铁 [15],然后将这项工作扩展为生产全软电动机 [16]。Li 等人引入了磁性油灰作为软体机器人的可重新编程、自修复建筑材料 [17]。为了替代耗电的电磁铁,机器人专家使用了电永磁体 [18]。电永磁体由两个磁化强度相同但矫顽力不同的永磁体组成 [19]。导电线圈缠绕在磁体周围,使得短暂的电流脉冲可以产生足够强的磁场来反转低矫顽力磁体的磁化,但不足以影响高矫顽力磁体。因此,通过选择性地反转低矫顽力磁体的极性,可以打开(非零净磁化)或关闭(中性净磁化)。与持续吸取电流的电磁铁相比,电永磁体仅在切换状态时短暂消耗能量;永磁体即使在开启状态下也不会消耗电能 [20]。
Abbreviations ADC: Antibody-drug conjugate ADCP: Antibody-dependent cell phagocytosis ADCC: Antibody-dependent cellular cytotoxicity AI: Aromatase inhibitor AKT: Protein kinase B ASCO-CAP: American Society of Clinical Oncology/College of American Pathologists CAR-T cells: Chimeric antigen receptor T cells cTNM: Clinical肿瘤淋巴结 - 纳斯症CDK:依赖细胞周期蛋白的激酶CCL5:趋化因子(C-C基序)配体5 CHI3L1:几丁质酶-3样蛋白1 CHRM1:毒蕈碱乙酰胆碱受体受体M1 DCIS M1 DCIS M1 DCIS M1 DCIS M1 DCIS:DDPCR:DDDPCR:DDDPCR:ddplet DIDIDER DIMDASE CRASSENT CONSE RIDENCASE COSSERVER DILDATE CRASSISS COMENCASS COMASE DRFFS: Early Breast Cancer Trialists' Collaborative Group EC: Epirubicin and cyclophosphamide EGFR: Epidermal growth factor receptor ER: Estrogen receptor ERBB2: Human epidermal growth factor receptor 2 (HER2) ERK: Extracellular signal-regulated kinase FDR: False discovery rate FZD: Frizzled receptors GNRH: Gonadotropin-releasing hormone GPCR: G蛋白偶联受体GPRC5D:G蛋白偶联受体C类C组5成员D HER1:人表皮生长因子受体1(EGFR)HER2:人类表皮生长因子受体2
摘要:界面结构和化学演变是电池和其他电化学系统安全性、能量密度和寿命的基础。在锂电沉积过程中,可能会出现局部非平衡条件,从而促进异质锂形态的形成,但直接研究这些条件具有挑战性,尤其是在纳米尺度上。在这里,我们绘制了锂电沉积过程中活性铜/电解质界面的化学微环境,并展示了一种新方法——原位冷冻低温电子显微镜 (cryo-EM),用于锁定纽扣电池中出现的结构。我们发现局部离子耗竭与锂晶须有关,但与平面锂无关,我们假设耗竭源于根部生长的晶须在生长界面消耗离子,同时限制离子通过局部电解质的传输。这可能导致危险的锂形态传播,即使在浓电解质中也是如此,因为离子耗竭有利于树枝状晶体的生长。因此,原位冷冻冷冻电镜可以揭示活性电化学界面处的局部微环境,从而能够直接研究能源设备运行过程中出现的特定地点的非平衡条件。
摘要:全球互联网基础架构的稳定性和可靠性在很大程度上依赖边界网关协议(BGP),这是一种重要的协议,可促进各种自主系统之间的路由信息交换,从而确保全球无缝连接。但是,BGP固有地具有对异常路由行为的敏感性,可能导致严重的连通性破坏。尽管做出了广泛的努力,但准确地检测并有效缓解了这种异常,这仍然是艰难的挑战。为了解决这些问题,本文提出了一种新型的统计方法,该方法采用了某些约束的中值绝对偏差,以主动检测BGP中的异常情况。通过应用高级分析技术,该研究为早期检测异常(例如Internet蠕虫,配置错误和链接故障)提供了强大的方法。这种创新方法已在经验上得到了验证,在识别这些破坏时,准确率为90%,精度为95%。这种高度的精度和准确性不仅确认了采用的统计方法的有效性,而且还标志着增强全球互联网基础架构的稳定性和可靠性的重要一步。
电子传输层(ETL)的材料在聚合物太阳能电池(PSC)的性能中起着重要作用,但是面临挑战,例如低电子传输迁移率和电导率,较低的解决方案处理性以及极端的厚度敏感性,这将破坏光伏性能和大型制造技术的兼容性。为了应对这些挑战,设计和合成了两个特殊胺锚定的长链链的新型N型二酰亚胺分子(PDINB)可行地设计和合成。pdinb在常见的有机溶剂中显示出非常高的溶解度,例如二氯甲烷(> 75 mg ml -1)和乙醇含有乙酸作为添加剂(> 37 mg ml -1),当在活动层上沉积时会导致出色的纤维形成性。使用PDINB为ETL,全面增强了PSC的光伏性能,从而导致功率转化效率(PCE)高达18.81%。由于PDINB的强大自动效应和高电导率,它显示出可观的厚度耐受性能,其中设备保持持续高的PCE值,厚度从5到30 nm变化。有趣的是,PDINB可以用作不同类型的PSC中的通用ETL,包括非富烯PSC和全聚合物PSC。因此,PDINB可以作为PSC的有效ETL的潜在竞争候选者。