电力系统正在经历前所未有的转变,从基于化石燃料的发电厂转变为主要依赖电力电子和可再生能源的低惯性系统。本文回顾了由此产生的设备和系统层面的控制挑战和建模谬误,并重点介绍了在向低惯性系统过渡的过程中需要修改的新方面或经典概念。为此,我们调查了有关低惯性系统建模的文献,回顾了有关电网连接电源转换器控制的研究,并讨论了低惯性系统的频率动态。此外,我们从控制的角度讨论了系统级服务。总的来说,我们得出结论,系统理论思维对于连接不同的研究社区和理解大规模低惯性电力系统中电力电子、电机及其控制的复杂相互作用至关重要。
使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
随着柔性和可穿戴电子产品的快速发展,寻找可靠、安全、高能量的可充电柔性电池 (FB) 成为近年来的研究热点。尽管业界展示了一些 FB 原型,学术界报道的出版物数量也在迅速增加,但大多数演示都是在实验室规模上进行的,仍然很难找到该技术在市场上的真正应用。这一观点旨在讨论和分析将 FB 推向商业可行水平的关键指标,包括能量密度、灵活性和安全性,特别关注文献中报道最多的锂电池和锌电池。我们首先将现有锂基和锌基 FB 的 FB 品质因数 (fb FOM) 与市场应用的要求进行比较。然后,我们分析最理想的高灵活性电池配置,然后系统地讨论高能量密度 FB 的特性和材料选择。第三,我们讨论实现
摘要 — 电动汽车 (EV) 的普及率不断上升,需要准确、有效的方法来协调电网运行。通过响应配电网限制和随时间变化的电价,电动汽车充电站可以最大限度地降低充电成本,同时协助电网运行。在本研究中,我们使用来自纽约州的实时价格数据和真实世界的充电网络数据集研究了车辆到电网 (V2G) 的经济效益。我们将非线性电池模型和价格不确定性纳入 V2G 管理设计中,以提供不同 V2G 选项的成本节省的实际估计。所提出的控制方法在扩展到实际应用时在计算上是可处理的。我们表明,与考虑单向充电的不受控制的充电相比,我们提出的算法平均可节省 35% 的充电成本,而与单向智能充电相比,双向 V2G 可额外节省 18% 的成本。我们的结果还表明在 V2G 控制器中使用更精确的非线性电池模型以及评估 V2G 价格不确定性成本的重要性。
在本研究中,我们分析了锂离子电池的局部非线性电化学阻抗谱 (NLEIS) 响应,并从测量的 NLEIS 数据中估算模型参数。该分析假设单粒子模型包括电极粒子内锂的非线性扩散和其表面的不对称电荷转移动力学。基于此模型并假设一个中等较小的激励幅度,我们系统地推导出直至二次谐波响应的阻抗的解析公式,从而可以根据模型中的物理过程和非线性对每个贡献进行有意义的解释。我们探讨了这对参数化的影响,包括使用最大似然进行结构识别分析和参数估计,同时使用了合成和实验测量的阻抗数据。可以精确拟合阻抗数据,但拟合的扩散时间尺度的不一致性表明非线性扩散模型可能不适用于所考虑的电池。还通过使用参数化模型预测时域电压响应来证明模型验证,并且结果表明这与测量的电压时间序列数据 (11.1 mV RMSE) 具有出色的一致性。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发 (CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/ 1945-7111/acada7 ]
1 1墨西哥神经生物学和国立大学,墨西哥Quere'taro校园,墨西哥Quere´taro,2,Me ofimem of Me ofico(UNAM)的工程学院(UNAM)研究部,避免失明的研究部,墨西哥,墨西哥,6个视觉健康封闭式,国立高等教育学院,狮子座大学,墨西哥国立大学(UNAM)Leo´n,墨西哥瓜纳武托拉,墨西哥,7雷尼娜·德尔·巴吉·伯(Elagent ofermations ofermations offiction ofermations ofermations promptation 302)(El offication 302) Quere´taro,Quere´taro,墨西哥,8墨西哥眼科研究所(IMO),I.A.P。 Centro Sur,Santiago de Quere´aro,Quere´aro,墨西哥
DOI:https://dx.doi.org/10.30919/es8d588 纤维素/碳纳米管复合柔性电极在超级电容器中的研究进展 孙哲1 齐厚娟1 陈曼慧1 郭斯通1 黄占华1,* Srihari Maganti2 Vignesh Murugadoss3 黄米娜2,3 郭占虎2,* 摘要 如今,对可穿戴、便携、可折叠的小型电子产品和人机交互界面设备的需求日益增加。因此,超级电容器由于其能量/功率密度高、充放电过程快、循环寿命长等优点,作为储能装置得到了广泛的研究。其中柔性电极材料是提升超级电容器性能的关键成分。纤维素作为一种天然柔性材料,具有成本低、来源广泛、可再生、机械性能强等特点,被用作电极的柔性基底或模板。为了提高纤维素基柔性电极的导电性和优异的电化学性能,将具有高导电性、良好的热稳定性和化学稳定性以及独特内部结构的碳纳米管(CNT)集成到纤维素基柔性电极中,制备出具有高能量/功率密度和长循环寿命性能的柔性超级电容器用纤维素/CNT基柔性电极。本文主要针对纤维素/CNT进行综述,着重总结了用于超级电容器的纤维素/CNT基复合柔性电极的组成、制备和机理,并讨论了纤维素/CNT基复合柔性电极目前面临的挑战和前景。
Heeger,MacDiarmid和Shirakawa等人发现导电聚乙炔。在1977年开设了一个新时代,这使他们因“导电聚合物的发现和开发”而获得了2000年诺贝尔化学奖。[1]在1987年,Tang和Vanslyke报告了砂含量的电致发光装置结构,代表了有机电子领域的里程碑。[2]在1990年,朋友,福尔摩斯,布拉德利及其来自剑桥大学的梅尔维尔实验室和梅尔维尔实验室的同事开发了其基于聚合物的电动发光设备,该设备被广泛认为是打开塑料电子设备的门。[3]从那时起,基于导电聚合物的有机发光二极管(OLED),有机光伏(OPV),有机场效应晶体效应(OFET)和有机固态激光器(OSSL)的技术一直非常迅速地推动。随着大量信息电子设备的灵活性,灵活的电子设备已成为现实。在过去的十年中,灵活的电子研究经历了快速增长,这也是由便携式和可穿戴仪器的功能驱动的。灵活的电子设备是一种猖ramp的技术发明,可重新使用软电介电和导电材料,它由于其出色的光电特性,例如电导率,opti-cal吸光度和载体和载体运输以及有吸引力的机械性能,包括灵活性,不良能力和溶液的制造,因此鼓励使用聚合物。核心组件的柔性设计在开发柔性电子设备方面起着至关重要的作用。灵活的电子设备被认为是基于开拓和跨学科研究的破坏性技术,它可以破坏基于经典硅电子产品的内在局限性。这可以为Ingration设计,能源革命,医疗技术变化开放创新的前景,从而为未来通过自我依赖的创新提供了重要的机会。柔性电子产品的优越性首先归因于对电子元素的性能的最终追求。灵活电子设备的关注问题通常是最佳光电特性和设备灵活性之间的权衡。出于织物的目的 - 高性能有机柔性设备,已经探索了不同的方法,主要集中在以下四个方面:a)内在灵活的有机成分(半导体,电极,绝缘体和底座),b)设备工程,c)c) - c)构造的构造技术和d)。具有内在灵活性的聚体用于构建灵活性
前庭诱发肌源性电位 (VEMP) 通常用于评估前庭神经和耳石器官的两个部分 (1–5)。在成人中,可以通过气导或骨导刺激可靠地诱发 VEMP (6);然而,尚未发表评估儿童 VEMP 可靠性的类似研究。VEMP 是对高强度刺激作出反应而诱发的肌肉电位 (1)。颈部 VEMP (cVEMP) 是从收缩的胸锁乳突肌 (SCM) 同侧记录的短潜伏期抑制反应,可提供有关囊和下前庭神经功能的信息 (1)。眼部 VEMP (oVEMP) 是从下斜肌对侧记录的兴奋反应,可提供有关椭圆囊和上前庭神经功能的信息 (7)。
摘要 现代电网在智慧城市运行中起着基础性作用,然而高影响低概率极端事件给城市电网安全带来严峻挑战,随着这些威胁受到越来越多的关注,城市电网的弹性已成为现代智慧城市的优先课题。弹性电网能够抵抗、适应并及时从中断中恢复,具有预期、吸收、适应和恢复四个特征。本文旨在系统地研究智慧城市的弹性电网发展。首先,本文对影响电网的高影响低概率极端事件类别进行回顾,可分为极端天气和自然灾害、人为恶意攻击和社会危机。然后,讨论了弹性评估框架和量化指标。此外,本文还总结了现有的基于微电网、主动配电网、综合及多能源系统、分布式能源资源和灵活资源、信息物理系统等多种弹性增强策略,以及一些弹性增强方法,包括概率预测与分析、人工智能驱动的方法和其他前沿技术。最后,本文提出了城市电网弹性研究的一些可能方向和发展,重点关注电力电子化城市配电网。