耦合振荡器网络中的集群同步是科学界广泛关注的课题,其应用范围从神经网络到社交网络、动物网络和技术系统。这些网络大多是有向的,信息或能量流从给定节点单向传播到其他节点。然而,集群同步方面的大多数工作都集中在无向网络上。这里我们描述了一般有向网络中的集群同步。我们的第一个观察结果是,在有向网络中,节点集群 A 可能单向依赖于另一个集群 B:在这种情况下,只要 B 稳定,A 可能保持同步,但反之则不成立。本文的主要贡献是一种将集群稳定性问题转化为不可约形式的方法。通过这种方式,我们将原始问题分解为最低维的子问题,这使我们能够立即检测到集群之间的相互依赖关系。我们将分析应用于两个感兴趣的例子:一个小提琴演奏者组成的人类网络演奏一首乐曲,音乐家可以激活或停用该乐曲的定向交互;以及具有定向层到层连接的多层神经网络。
2目录5 2.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1.1本文档的范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1.2什么是起搏器?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.1安装Almalinux 9。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 10 2.2.2配置OS。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。10 2.2.1安装Almalinux 9。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.2配置OS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>21 2.2.3重复第二个音符。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 2.2.4在节点之间配置通信。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 2.3设置并群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.3.1简单的使用和群集外壳。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。26 2.3.2安装群集软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.3.3配置群集软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.3.4探索PC。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>28 2.4启动并验证群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 2.4.1开始群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 2.2.2验证CoroSycc安装。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。31 2.4.3验证起搏器安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.4.4探索现有配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.5配置围栏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 2.5.1什么是围栏?。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>34 2.5.2选择和围栏设备。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>34 2.5.3配置簇用于围栏。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 2.5.4示例。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。35 2.6创建一个主动/被动群集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.6.1添加资源。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.6.2执行故障转移。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 2.6.3防止恢复后资源移动。。。。。。。。。。。。。。。。。。。。。41 2.7添加Apache HTTP服务器作为群集服务。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.1安装Apache。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 42 2.7.2创建网站文档。 。 。 。 。42 2.7.1安装Apache。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.2创建网站文档。 。 。 。 。42 2.7.2创建网站文档。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.3启用Apache状态URL。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.7.4配置群集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.7.5确保在同一主机上运行资源。。。。。。。。。。。。。。。。。。。。。。。。。44 2.7.6确保资源开始和停止。。。。。。。。。。。。。。。。。。。。。。。。45 2.7.7更喜欢一个节点,而不是另一个节点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 2.7.8手动移动资源。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47 2.8使用DRBD复制存储。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48
在小鼠中,肠道簇细胞被描述为一种长期寿命的有丝分裂后细胞类型,其中30个已经鉴定出了两个不同的子集,称为Tuft-1和Tuft-2 1。通过结合对31次人类肠道切除材料和肠道器官的分析,我们确定了四个不同的32个人簇细胞状态,其中两个与它们的鼠重叠。我们表明,簇簇33细胞的发育取决于Wnt配体的存在,簇状细胞数在白介素(IL)-4和IL-13暴露后迅速增加34,如小鼠2-4中报道。这35个是通过预先存在的簇细胞的扩散而来发生的,而不是通过从干细胞中增加的36产生来发生。的确,在胎儿和成人37人类肠道中,增殖性簇细胞在体内都存在。单个成熟的增殖簇细胞可以形成含有所有38种肠上皮细胞类型的器官。与干细胞和祖细胞不同,人簇细胞生存39辐射损伤,并保留产生所有其他上皮细胞类型的能力。因此,缺乏簇簇细胞的40种手机无法从辐射诱导的损伤中恢复。因此,41个簇细胞代表了人类损伤诱导的储备肠干细胞库。42
摘要 重力引起的意识丧失 (G-LOC) 是战斗机飞行员面临的主要威胁,可能会导致致命事故。高 +Gz(头到脚方向)加速度力会诱发脑出血,导致周边视力丧失、中央视力丧失(昏厥)和 G-LOC。我们尝试建立一个公式,使用脑氧合血红蛋白 (oxyHb) 值、身高、体重和身体质量指数 (BMI) 来预测 G-LOC。我们分析了 2008 年至 2012 年间测量的 249 名人体离心机受训者的脑氧合血红蛋白值。受训者暴露于两种离心机模式。一种是 4G–15s、5G–10s、6G–8s 和 7G–8s,不穿抗荷服(间隔 60 秒,发作率为 1G/s)。另一组为 8G-15s,起始速率为 6G/s,穿着抗荷服。我们使用近红外光谱仪 (NIRS)(NIRO-150G,日本静冈县滨松光子学株式会社,滨松)测量了受训者的脑氧合血红蛋白值。分析了以下参数。A)基线值为 +Gz 暴露前 30 秒的平均值。B)+Gz 暴露期间氧合血红蛋白的最大值。C)+Gz 暴露期间氧合血红蛋白的最小值。D)氧合血红蛋白从最大值到最小值的变化率(变化率)。使用逻辑回归分析进行统计分析,以建立预测 G-LOC 的公式。受训者的年龄为 24.1 ±1.7(S.D.)(范围,22 ~ 30)
图1多个系统萎缩的治疗方法这种形状说明了针对多系统萎缩(MSA)病理机制的各种治疗策略。MSA的特征是神经元丧失,神经胶质病和α-突触核蛋白夹杂物的积累。抗 - α突触核蛋白疗法包括 - 在诸如ANELE138B,清除剂,例如PD01A,PD03A,LU AF82422,TAK - 341和UB – 312和UB –312和UB –312和抑制方法之类的清除剂中的聚集。细胞疗法涉及修复和再生受损神经组织的间充质干细胞。能量代谢和INSU -LIN信号 - 靶向疗法包括脱齿素 - 4,泛氨醇和NAD +补充。抗炎性和神经保护疗法具有氟西汀,AAV2 - GDNF和KM819的化合物,可减少炎症并提供神经保护作用。细胞调节文本包括显示退化的神经元,α-突触核蛋白夹杂物,活化的星形胶质细胞和小胶质细胞,免疫 - 反应性T细胞,IM成对的线粒体,Pro - 炎性细胞因子,肌蛋白损失和髓质细胞质细胞胞质包含(GCIS)(GCIS)。此视觉代表提供了MSA中治疗策略及其细胞靶标的概述。
摘要。大多数恒星形成块状和亚式结构簇。这些特性也出现在恒星形成云的水力动力模拟中,这为幼年恒星簇的n-身体运行提供了一种逼真的初始条件。然而,在组合时间方面,通过水力学模拟生产大量的初始条件非常昂贵。我们引入了一种新型技术,该技术以微小的计算成本从给定的水力学模拟样本中生成新的初始条件。尤其是我们应用层次聚类算法来学习恒星之间空间和运动学关系的树表示,其中叶子代表单颗恒星,节点描述了在越来越大的尺度下群集的结构。通过简单地修改恒星群集的全局结构,而在使小规模的属性不变的同时,可以将此过程用作随机生成新恒星的基础。
I II III 因素 1 (H1):不信任他人的自我中心主义 (α=.79) 12. 人们可能会说好话,但最终他们最关心的是自己的幸福。 5.03 (1.12) .65 -.05 .00 16. 人们更有可能维护自己的权利,而不是承认他人的权利。 4.70 (1.06) .64 -.04 .00 2. 人们会做一些轻微的错事来获得自己的利益。 4.48 (1.11) .60 .08 .09 17. 人们撒谎是为了避免麻烦。 4.61 (1.08) .60 .01 .07 6. 人们撒谎是为了出人头地。 4.35 (1.21) .54 .13 .16因素 2 (H2):相信人们的诚实 (α=.70) 5. 人们通常过着诚实正直的生活 4.16 (1.17) -.11 -.70 .14 8. 人们通常诚实地与他人打交道 4.55 (1.03) .13 -.65 -.15 1. 人们基本上是诚实的 4.36 (1.19) .08 -.61 -.15 14. 人们说到做到 4.00 (1.08) -.11 -.50 .16 因素 3 (H3):不相信人们的谨慎 (α=.67) 4. 人们怀疑别人对自己很友善,因此很谨慎 3.90 (1.09) .05 -.07 .64 10. 人们认为不信任他人更安全4.03 (1.14) .13 .03 .54 13. 人们内心不愿意帮助别人 3.53 (1.10) .00 .11 .53 9. 人们很谨慎,因为他们认为有人会利用他们 4.38 (1.08) .20 -.15 .43 最大似然法,Promax 旋转 特征值 3.93 1.90 1.16 贡献率 30.3% 14.6% 8.9% 累积贡献率 30.3% 44.8% 53.7% 因子间相关性 I - 0.25 0.55 II - - 0.31
摘要:通过解决经典成核理论 (CNT) 的缺陷,我们开发了一种从成核速率实验中提取小水团簇自由能的方法,而无需对团簇自由能的形式进行任何假设。对于高于 ∼ 250 K 的温度,从实验数据点提取的自由能表明,随着团簇尺寸的变化,它们与 CNT 预测的自由能之比表现出非单调行为。我们表明,对于单体,该比率从几乎为零增加,并在接近大团簇的 1 之前通过(至少)一个最大值。对于低于 ∼ 250 K 的温度,提取的能量与 CNT 预测之间的比率行为会发生变化;它随着团簇尺寸的增加而增加,但对于几乎所有的实验数据点,它都保持在 1 以下。我们还应用了最先进的量子力学模型来计算水团簇(2 − 14 个分子)的自由能;尽管温度高于和低于 ∼ 298 K,结果仍然支持观察到的基于温度的行为变化。我们比较了两种不同的模型化学物质 DLPNO-CCSD(T)/CBS// ω B97xD/6-31++G ** 和 G3,并与水二聚体形成的实验值进行了比较。
图 5 . 基于 CRISPR-Cas9 的 pepC 和 sacB 基因多重基因组编辑。(A)以 mRFP 或 sfGFP 为目的基因的单基因缺失、多重缺失和多重整合的结合和编辑效率。Y 轴上提供结合效率(灰色)和编辑效率(橙色)。编辑效率条顶部的数字表示筛选的接合子总数。误差线表示标准偏差。在确定编辑效率之间的显著差异时,考虑 P 值 < 0.05(* p < 0.05;** p < 0.01)。与单基因缺失和多重缺失相比,多重 mRFP 整合具有显著差异,与单基因缺失相比,多重 sfGFP 整合也具有显著差异。 (B) P. polymyxa 突变体的显微图像,其中 sfGFP 取代了 pepC 和 sacB 基因。(左) 明场图像;(右) GFP 通道。(C) 筛选过程中获得的野生型和突变体的比例以饼状图形式提供。
背景:尚未探索机器学习(ML)提高医学专业委员会效率的潜力。,我们应用了无监督的ML来确定美国家庭医学委员会(ABFM)外交官之间的原型,以了解其实践特征和参与持续认证的动机,然后检查动机模式与关键的重新获得胜任结果之间的关联。方法:对2017年至2021年ABFM家庭医学持续认证考试调查的外交官选择了选择继续认证的动机。我们使用卡方检验来检查外交官的差异比例失败,因为他们的第一次再认证考试尝试都认可了维持证书的不同动机。无监督的ML技术用于生成具有相似实践特征和重新认证动机的医师群。控制医师人口统计学变量,我们使用逻辑回归来检查动机簇对再认证检查成功的影响,并通过与以前创建的专家开发的分类模式进行了验证。结果:ML簇在很大程度上概括了专家先前设计的固有/外在框架。然而,识别的群集将外交官更加平等地分配到同类群体中。在ML和人类群中,主要是外部或混合动机的医生的检查失败率低于那些本质上动机的医生。(J Am Board Fam Med 2024; 37:279–289。)讨论:这项研究证明了使用ML补充和增强人类对董事会认证数据的解释的可行性。我们讨论了这项示威研究对专业委员会与医师外交官之间的相互作用的影响。