冰从[15]产生任何霜冻时产生键反照率。这些地图中的每个地图都经过汇总和划分平均,以创建一组查找表,使我们能够在每个时间步骤和位置(包括表面,地下和大气温度)计算所有相关的物理量;表面压力;和凝结的质量。通过首先忽略潜在热项来计算凝结的质量。如果发现表面温度降低到霜点以下,则该模型将根据沉积的潜在沉积热来计算从大气中凝结的数量,以将表面温度移回霜点。我们通过将单层,多散射气氛模型与我们的表面/地下模型耦合,来解释季节性沙尘暴对全球能量平衡的影响。该模型使用尘埃深度数据[14]来计算太阳辐射散布并被大气吸收后的入射表面通量。
以图像扩散模型的出色性能为动机,越来越多的研究人员努力将这些模型扩展到基于文本的视频编辑任务。然而,当前的视频编辑任务主要遭受高调成本与有限发电量之间的困境。与图像相比,我们猜测视频需要更多的限制来保留编辑期间的时间一致性。朝着这一目标,我们提出了夏娃,一种坚固而富的零射击方法。在深度图和时间一致性约束的指导下,EVE通过负担得起的计算和时间成本得出令人满意的视频编辑结果。更重要的是,认识到没有公开可用的视频编辑数据集进行公平比较,我们构建了一个名为ZVE-50数据集的新基准。通过全面的实验,我们验证了夏娃在绩效和效率之间取得令人满意的折衷。代码,数据集和视频编辑演示可在https://github.com/alipay/alipay/ant-multi-modal- framework/blob/ain/main/prj/eve上使用。
SDE扩展的最有希望的平台之一是基于拓扑绝缘体的二极管[1]。Ti的表面提供了强的自旋轨道耦合(SOC),这使得有可能证明具有实质性的磁电效应[2]。已经向基于Ti的Josephson连接处的磁电效应支付了特殊的注意,在那里它以异常的基态相移的形式揭示了自己[3,4]。最近,已经证明,在Ti杂种结构中,在空间分离超导性和铁磁性的结构中,也对基态进行了修改[5,6]。在这种情况下,基态对应于空间不均匀的超导顺序参数。这种超导状态通常称为螺旋状态[7]。超导螺旋状态成为实现SDE的选择之一[8]。由有限的库珀对动量描述,螺旋状态可以在反转和时间反向对称性的系统中进行实现。前者与哈密顿式的SOC术语的出现相连,而后者可以由磁场引入。在这种情况下,库珀对动量的方向取决于磁场的方向。库珀对的有限含量,锁定在磁场的方向上,导致各种系统中的非偏置下降电流。在这里,我们讨论了Ti表面状态在S/TI/S系统中使用平面内Zeeman字段中的Josephson Critistal Crister和非转流运输的六角形翘曲的后果。在基于TI的设备中,六角形翘曲的影响很重要,因为它可以显着改变某些运输特性。例如,众所周知,由于费米表面的变形,在缺陷附近的伴侣效应得到了强烈增强[9]。翘曲术语也导致自旋的各向异性
NNSA 的 ICF 计划拥有三座独一无二的世界领先科学设施,即劳伦斯利弗莫尔国家实验室 (LLNL) 的国家点火装置 (NIF)、桑迪亚国家实验室的 Z 脉冲功率装置 (Z) 和罗彻斯特大学激光能量学实验室 (LLE) 的欧米茄激光装置 (OMEGA)。这三座互补的设施是美国唯一能够研究宏观高能密度 (HED) 科学的设施。此外,洛斯阿拉莫斯国家实验室为聚变点火贡献了新方法,而每个实验所需的复杂靶材均由通用原子公司开发和制造。靶材质量和创新继续成为三座主要 ICF 设施性能提升的重要推动力。
摘要:量子线性系统算法(QLSA)具有加快依赖求解线性系统的算法的潜力。内部方法(IPM)产生了解决优化问题的多项式时间算法的基本家族。IPMS在每次迭代中求解一个牛顿线性系统以找到搜索方向,因此QLSA可以潜在地加速IPMS。由于当代量子计算机中的噪声,这种量子辅助IPM(QIPM)仅允许牛顿线性系统的不精确解决方案。通常,不精确的搜索方向导致不可行的解决方案。在我们的工作中,我们提出了一个不可天性的QIPM(IF-QIPM),并在解决线性约束的二次优化问题方面表现出了优势。我们还将算法应用于ℓ1 -Norm软边缘支持向量机(SVM)问题,并获得有关依赖性尺寸的最佳复杂性。这种复杂性结合比任何产生经典解决方案的现有经典或量子算法要好。
低惯性孤立电力系统面临着电力波动的弹性问题。风能和太阳能光伏等可再生能源的整合进一步推动了这一问题的界限。可再生能源份额的提高需要更好地评估电力系统的稳定性,以避免严重的安全和经济后果。因此,考虑频率稳定性要求和分配适当的旋转备用成为电力系统长期规划和运营管理中至关重要的主题。本文提出了动态频率约束,以确保在由于阵风或云层通过等原因造成的短期电力变化期间的弹性。案例研究中举例说明了所提出的约束的使用,约束被集成到混合整数线性规划算法中,用于确定孤立工业工厂中太阳能光伏和电池储能资源的最佳容量。本案例研究的结果表明,如果忽略频率约束,能源平准化成本和碳排放的减少量可能分别被高估 8.0% 和 10.8%。使用案例研究的时域模拟验证了所提出的最佳定型方法。结果表明,该最佳系统在最坏情况下是频率稳定的。
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)