肽是化学和生物学中相关的分子实体,其应用从药物发现[1,2]到食品技术[3,4]。机器学习已加速了肽发现,例如,用于从头设计,序列优化和证明/生物活性预测[5-8]。机器学习的关键步骤是肽的反应[9,10],从而将相关的结构插入转换为用于模型训练的数值格式。可以采用几种策略来编码肽信息,例如,通过描述物理化学特征[10],单速编码[11]和/或进化信息[12]。这些方法中的每一种都捕获了不同的结构信息,可能适合不同的机器学习方法[13],并且可能对模型性能有唯一的贡献[11,14]。虽然公共批准可用于特定编码meth-
精准医疗结合了分子生物学、化学、材料科学和其他领域的多个跨学科领域,以产生更准确的疾病治疗方法。测序、细胞区室和治疗靶点表征方面的进展,以及制药行业的进步,导致了高级研究和临床试验数量的增加。许多临床试验都涉及用于治疗各种疾病(如代谢、免疫和激素紊乱以及癌症)的蛋白质和肽类药物。[1] 制药市场上大约 10% 的药物是肽类或蛋白质药物,包括 DrugBank 中的 485 条肽类药物 [2] 和 THPdb 中 239 条 FDA 批准的肽类药物。[1] 肽类和蛋白质药物因其生物相容性、通过氨基酸序列变化设计的灵活性以及独特的分子拓扑结构,在从传感和催化到治疗等各种应用中具有巨大潜力。 [3] 更具体地说,它们表现出独特的属性,例如氢键潜力、氨基酸固有的手性、多态性 [4] 和源自肽键的构象刚性。[3] 此外,肽可以是天然的也可以是合成的,例子包括重组激素、抗菌肽、抗体和重组酶,[5] 此外,还可以加入非天然氨基酸来进一步实现化学多样化。[6]
CIS 展示是一种基于重组 DNA 的技术,无需克隆即可将表达的肽或蛋白质库与其自身的 DNA 序列连接起来。细菌复制起始蛋白 RepA 的活性是该技术的核心。该蛋白质是一种大肠杆菌质粒复制起始蛋白,具有独特的特性,即专门与其来源的相同 DNA 模板结合——“顺式活性”。CIS 展示提炼了这种天然系统的基本成分,因此 RepA 及其遗传控制元件被携带在短线性 DNA 序列上,该序列可以通过聚合酶链式反应 (PCR) 轻松生成。这些控制元件是 CIS 元件和 ori 区域,它们终止转录复合物,因此可以将新生表达的 RepA 蛋白加载到其自身模板的 ori 区域上。通过编码与 RepA 融合的肽或蛋白质库,表达的库肽附着在其编码 DNA 上(图 1)。随后可以对 DNA 代码进行测序以显示肽序列 (1)。 CIS 展示是一种重组程序,需要细菌转录和翻译机制的组件才能运行;然而,该过程可以在细胞外进行,而噬菌体展示等其他技术则需要在细菌内部复制(1-2)。因此,CIS 展示可以以纯无细胞的方式使用细菌细胞裂解物,从而克服了其他技术需要将 DNA 转移到细胞中的局限性,而转移是一种低效的过程,并且限制了文库的大小。实际上,这意味着 CIS 展示操作简单,可以快速生成和筛选更大的文库,从而缩短从文库设计到命中识别的时间。几天内就可以生成超过 10 13 个与其自身代码相关的不同肽的文库,并在几周内进行筛选。与 RepA 融合的肽专门且有效地与其自身的 DNA 连接:在使用肽标签的测试中,超过 40%
3 另外,道具的展示顺序也是随机的。 4 由于10个项目中有4个被呈现,因此如果随机呈现,每个项目出现的次数可能会有所不同。因此,可以使用平衡的不完全区组设计(Louviere 和 Flynn,2010)来确保项目出现的频率相等。然而,由于本章的样本量非常大,达到 150,010(使用下面描述的计数方法),我们确定由于随机呈现而导致的出现次数差异很小。
shank3相关的蛋白网络在磷酸化和去磷酸化的蛋白中显着富集。shank3基因在染色体22q13.3上的单倍不足通常会导致Phelan-McDermid综合征(PMS),这是一种遗传定义的自闭症形式,在运动行为,感觉处理,语言,语言和认知功能中存在严重缺陷。我们在shank3杂合小鼠中确定了多种疾病的表型,并表明JB2挽救了突触功能和可塑性,学习和记忆,超声声音和运动功能的缺陷;它还标准化了神经元兴奋性和癫痫敏感性。值得注意的是,JB2挽救了听觉诱发的响应潜伏期,α峰值频率和稳态脑电图响应的缺陷,该响应的测量值直接转化为人类受试者。这些数据表明JB2是神经可塑性的有效调节剂,具有治疗PMS和ASD的治疗潜力。
摘要:心房利钠肽主要由心房合成,排出后主要有两个作用:扩张血管和增加肾脏对钠和水的排泄。近几十年来,人们对心房利钠肽在心脏系统中的作用有了很大的了解。本综述重点介绍了几项研究,这些研究证明了分析心脏内分泌和机械功能之间调节的重要性,并强调了心房利钠肽作为心房的主要激素对心房颤动 (AF) 和相关疾病的影响。本综述首先讨论了有关心房利钠肽诊断和治疗应用的现有数据,然后解释了心房利钠肽对心力衰竭 (HF) 和心房颤动 (AF) 以及反之亦然的影响,其中跟踪心房利钠肽水平可以了解这些疾病的病理生理机制。其次,本综述重点介绍了心房利钠肽的常规治疗,例如心脏复律和导管消融,以及它们对心脏内分泌和机械功能的影响。最后,本文提出了关于心脏复律后心脏机械和内分泌功能恢复延迟的观点,这可能导致急性心力衰竭的发生,以及通过大面积消融或手术恢复窦性心律对失去 ANP 产生部位的潜在影响。总体而言,ANP 通过影响血管舒张和排钠作用在心力衰竭中起关键作用,导致肾素-血管紧张素-醛固酮系统活性降低,但了解 ANP 在 HF 和 AF 中的密切作用对于改善其诊断和个性化患者治疗至关重要。