现代基于片上网络的多处理器片上系统 (NoC-based MPSoCs) 具有更高的性能潜力,但也可能允许在飞机等复杂系统中将相同功能集中在更少的设备上。尽管有这些优势,但航空电子行业仍然不愿采用多核技术,因为必须满足可预测性等软件要求才能保证安全性和可靠性。多核处理器的应用对这些要求的影响尚未完全了解。因此,我们的研究是由航空电子领域中与多核应用相关的软件需求驱动的。我们解决系统行为的动态方面,并研究灵活分区和在线任务迁移作为一种在共享计算平台上提高资源利用率的方法。
为了充分发挥 Monza R6 标签芯片的性能潜力,天线必须在其端子处呈现适当的阻抗。图 4 所示的简化集总元件标签芯片模型是最佳源阻抗的共轭,不等于芯片输入阻抗。由于标签 RF 电路具有非线性、随时间变化的特性,因此必须采用这种间接的源牵引方法来推导端口模型。该模型在宽频率范围内与芯片具有良好的数学拟合度。
现代基于片上网络的多处理器片上系统 (NoC-based MPSoCs) 具有更高的性能潜力,但也可能允许在飞机等复杂系统中将相同功能集中在更少的设备上。尽管有这些优势,但航空电子行业仍然不愿采用多核技术,因为必须满足可预测性等软件要求才能保证安全性和可靠性。多核处理器的应用对这些要求的影响尚未完全了解。因此,我们的研究是由航空电子领域中与多核应用相关的软件需求驱动的。我们解决系统行为的动态方面,并研究灵活分区和在线任务迁移作为一种在共享计算平台上提高资源利用率的方法。
世界FZO的未来自由区(FFZ)计划可以支持可持续的海洋发展。其签名IZDIHAR指数提供了免费的经济区域,这是一个框架,以实现其全部性能潜力,加快价值创造并促进区域繁荣。FFZ基于三个主要的卓越支柱;最佳实践,创业与创新与可持续性。Izdihar(阿拉伯语“繁荣”)指数监视45进步指标。这些指标是定性的,在给定的“最佳班级”,创新和可持续性以及相关的可持续发展可靠接触点中,测量了一个区域的成就程度。联合国2030年的可持续发展目标(SDG)试图消除贫困,保护地球并确保所有人的繁荣。
摘要 — 太阳能和风能等可再生能源的间歇性需要与储能装置集成才能实现实际应用。在本研究中,通过实验研究了在存储、充电和放电 (SCD) 条件下与水加热系统集成的翅片圆柱形热能存储 (C-TES) 的热性能增强情况。从理论和实验上详细研究了在 PCM 中添加氧化铜 (CuO) 和氧化铝 (Al 2 O 3 ) 纳米颗粒对热导率、比热以及充电和放电性能速率的影响。实验装置利用石蜡作为 PCM,将其填充在翅片式 C-TES 中进行实验。实验结果表明,与非纳米添加剂 PCM 相比,有积极的改善。该项目的意义和独创性在于评估和识别具有更高改善热性能潜力的优选金属氧化物。
Selaiyur,Chennai-600073摘要: - 本研究论文介绍了使用重叠配置的悬停自行车的设计和制造过程。本研究的目的是探索悬停自行车概念的可行性和性能潜力,该概念结合了重叠的转子,以增强稳定性,可操作性和2.5公斤有效载荷。详细讨论了在发育中采用的设计注意事项,结构分析,空气动力学优化和制造技术。进行了实验测试和评估,以验证性能特征并评估拟议设计的可行性。这些发现证明了在悬停自行车设计中重叠配置的潜力,突出了其实现改进的稳定性和控制的能力,为未来的Hoverbike Technologies的进步铺平了道路。关键字: - BLDC电动机,无人机,无人驾驶汽车,效率,功率重量比,高RPM功能,控制,稳定性,稳定性,降低噪音,维护,未来的进步。
自 1975 年发布 PM1000 音频混音器以来,Yamaha 一直处于专业音频行业的前沿。NS10-M STUDIO 监听音箱、02R 数字混音控制台和 SPX90 效果处理器等产品进入了世界各地的领先工作室,最终赢得了声誉,成为该领域的“经典”。从 90 年代中期到世纪之交,DAW(数字音频工作站)已成为音频制作的主要工作环境,2005 年 1 月,为这一不断发展的领域贡献了许多先进技术和解决方案的 Steinberg Media Technologies(以下简称“Steinberg”)成为 Yamaha 的全资子公司。这种关键的融合导致集成产品和系统的发展日益协调一致。Steinberg 最初成立于 1984 年,迅速成为重要音频处理标准的来源,例如 ASIO(音频流输入和输出)、VST(虚拟工作室技术)等。这些先进技术被融入到许多革命性产品中,包括目前受到全球 150 多万用户青睐的 Cubase 和 Nuendo DAW 应用程序。Yamaha 和 Steinberg 的联合开发产生了许多音频接口和控制器,充分利用了 Steinberg DAW 软件的性能潜力。两大音频技术领导者之间的协同作用将继续为未来广泛的应用提供越来越先进的解决方案。
摘要 — 在量子力学细节层面模拟物理系统的时间演化——称为哈密顿模拟 (HS)——是物理学和化学领域一个重要而有趣的问题。对于这项任务,已知在量子计算机上运行的算法比传统算法快得多;事实上,这一应用促使费曼提出了量子计算机的构建。尽管如此,要达到这种性能潜力仍面临挑战。先前的工作重点是编译 HS 的电路(量子程序),目标是最大限度地提高准确性或门取消。我们的工作提出了一种同时推进这两个目标的编译策略。在高层次上,我们使用经典优化(例如图着色和旅行商)来排序量子程序的执行。具体而言,我们将哈密顿量(表征量子力学系统的矩阵)中相互交换的项组合在一起,以提高模拟的准确性。然后,我们重新排列每个组内的项,以最大限度地提高最终量子电路中的门取消。这些优化措施共同提高了 HS 性能,使电路深度平均减少了 40%。这项工作推动了 HS 的发展,进而推动了基础科学和应用科学领域的物理和化学建模。
在半个多世纪的时间里,微电子学是由摩尔定律驱动的,摩尔的定律预测每18个月的整合密度将增加一倍,从而指数增长,这对于经济和绩效原因非常有益。根据IRDS [1]的规模,尽管摩尔法律已经结束,但在未来十年中,尽管摩尔的法律已经结束。然而,必须克服许多挑战,其中许多与材料缩放达到原子维度的事实有关,尤其是在垂直区域中。例如,硅的迁移率开始恶化在5 nm以下[2],这对于其他3D材料可以预期。因此,IRDS将分层的2D半导体列为2028年以后超级FET和内存设备的有前途的选择。符合这些要求,有几个组报告了石墨烯[3],硅[4],黑磷[5]和过渡金属二北卡尔科氏菌[6,7]表现出极好的晶体管特征。研究工作主要集中在寻找具有最高迁移率和体面的带镜头的最佳渠道材料上。此外,已经进行了MOS 2 FET的电路集成尝试[8]。然而,2D FET还需要合适的绝缘体来将控制门与通道分开,该通道应该是可扩展的,并且理想地与2D半导体一起搭配,就像SIO 2一样,与Sio 2一起使用。缺乏这些绝缘子使得完全利用2D电子设备的预先定价性能潜力是复杂的,尽管