加拿大国家研究委员会 (NRC) 开展的两项测试项目的结果表明,ICI 的 Klea 407 A 制冷剂是 R-502 最节能的 HFC 替代品,适用于往复式和旋转式(涡旋和螺杆式)压缩机。这些结果来自一家国际公认的独立政府组织,证实了之前基于全球客户现场试验的发现,并表明 Klea 407 A 应被视为最受青睐的 R-502 长期替代品。NRC 热技术项目经理 Keith Snelson 在讨论往复式压缩机试验时表示。 “在所研究的 HFC 替代品中,只有 Klea 407 A 在所有测试条件下的性能系数 (COP) 高于 R-502,效率高出 1 - 6%。R-404A、R-407B 和 R-507 的性能相当,COP 比 R-502 低约 1 - 12%。虽然我们的测试台往往是对制冷剂进行非常严格的测试,但它似乎确实对制冷剂性能进行了准确的排名”。
热电 (TE) 材料是当今极少数可持续且可行的能源解决方案之一。这种巨大的能量收集前景取决于识别/设计出比现有材料效率更高的材料。然而,由于材料的化学空间非常广阔,到目前为止,只有一小部分材料经过了实验和/或计算扫描。通过在主动学习框架中采用基于压缩感知的符号回归,我们不仅确定了材料成分中具有卓越 TE 性能的趋势,还预测并通过实验合成了几种性能极高的新型 TE 材料。其中,我们发现 Cu 0.45 Ag 0.55 GaTe 2 在 827 K 时具有高达 ~2.8 的实验性能系数,这是该领域的一项突破。所提出的方法证明了物理信息描述符在材料科学中的重要性和巨大潜力,特别是对于通常在良好控制条件下的实验中获得的相对较小的数据集。
对可持续清洁能源的需求推动了热电 (TE) 材料的发展,这种材料可将热能直接转化为电能并实现分布式冷却。[1–3] 能量转换效率通过无量纲性能系数 zT = S 2 σ T / ( κ ele + κ lat ) 来衡量,其中 S 、σ 、T 、κ ele 和 κ lat 分别为塞贝克系数、电导率、绝对温度、电子热导率和晶格热导率。[4–8] 尽管 zT 的表达式看起来很简单,但增加其值却是一项艰巨的任务。具体而言,虽然在半导体中通常获得较高的 S,但在金属中会发现较大的 σ ,而在非晶态材料中会实现较低的 κ lat 。[6,9] 这已经表明优化要求很复杂。显然,相关优化参数 S 、 σ 和 κ ele 紧密相关。这阻碍了 zT 的改善和优质热电材料的识别。因此,
摘要 — 太空辐射粒子会导致电路故障。它对内存敏感的存储设备尤其敏感。当它影响存储在内存电路中的数据时,会造成中断。标准 6T SRAM 无法缓解这种中断。因此,许多作者提出了各种恢复策略。然而,存储单元效率和软错误概率之间存在权衡。本文介绍了一种极性设计软错误翻转恢复 SRAM 存储单元 (SUR-16T),它可以有效地恢复由于高能粒子撞击而丢失的数据。与上述存储单元相比,SUR-16T 具有出色的写入稳定性、更低的保持功耗和更短的 PVT 变化写入访问时间。此外,在 0.8V 电压下,SUR-16T 的临界电荷比 SEA-14T/ RHBD-13T/ RHMC-12T/ QCCS-12T/ NRHC-14T/ HRRT-13T 高 0.96 倍/ 1.15 倍/ 1.10 倍/ 1.18 倍/ 1.02 倍/ 1.64 倍。此外,所提出的存储单元比现有存储单元具有更高的相对性能系数。
过去几十年来,采用蒸汽压缩的传统制冷已广泛应用于大型工业系统,由于尺寸小的限制,在微电子冷却领域的应用很少。本研究提出了一种高效的机械制冷系统,用于主动冷却大功率微电子系统中印刷电路板上的电子元件。所提出的系统包括几个微型组件——压缩机、蒸发器、冷凝器——作为制冷系统的一部分,旨在适应小规模电力电子设备。该系统经过热优化,可达到高 COP(性能系数)。蒸发器/冷凝器单元使用微通道阵列。先前的研究表明,R-134s 制冷剂提供最佳的 COP/可行性比,同时也最适合微电子应用 [1]。本研究建立了使用 R134a 制冷剂的拟议小型蒸汽压缩制冷机的分析模型。制冷系统经过热优化,冷却功率范围为 20 至 100 W,系统 COP 值高达 4.5。在研究的最后一部分,
1. 详细分析了从航路点 IGARI 到苏门答腊岛北部最后一次雷达接触的已知轨迹。结果表明,飞机在改变航线时的掉头很可能是手动操作的。经过短暂下降后,飞机以恒定的 310 节 IAS 速度在 FL300 飞行,并在 18h21’ UTC 后略微加速。这与从掉头后的官方出口点到最后一次雷达接触的时间相符。 2. 使用经过验证的航空计算重建的未知轨迹基于:a. 我们根据当天的天气数据对 18h28 UTC 的燃油量进行估计。b. 被认为值得信赖的 Inmarsat 卫星弧。c. 飞行员使用的当天气象信息和卫星事后收集的数据(风图、温度报告、全球数据同化系统-GDAS 等)d.搭载 Rolls-Royce Trent 892 发动机的 B777-200ER 的“飞行性能”表。例如 9M-MRO 具体技术数据,如燃油消耗性能系数 3。沿我们重新计算的轨迹计算出的 BTO 和 BFO 2 值与官方测量值相匹配,因为它们分别在 Inmarsat 定义的 +/-50 µs 和 +/- 7 Hz 范围内。
热电材料能够实现热和电的直接转换,在制冷和发电方面有着良好的应用前景,引起了人们的广泛关注。考虑到更广泛的应用场景和在室温(RT)附近更大的需求,在过去的几十年里,在室温附近具有高性能的 TE 材料引起了广泛的研究关注。材料的 TE 性能通过其无量纲性能系数 zT = S 2 σT/(κ e +κ L ) 来判断,其中 S、σ、T、κ e 和 κ L 分别为塞贝克系数、电导率、绝对温度、热导率 κ 的电子和晶格分量。到目前为止,Bi 2 Te 3 基合金是唯一在 RT 附近具有理想 zT 值的商业化材料,而 n 型 Mg 3 Sb 2 最近被认为是另一种有前途的 TE 材料,其 zT 在 RT 附近约为 0.8。 Bi 2 Te 3 和 Mg 3 Sb 2 均具有本征的低晶格热导率κL,这是其高TE性能的基础之一。1-4
摘要:本研究是对作者最近发表的一篇论文的扩展。特别是,本文重点介绍了为住宅应用开发的多联产系统添加电力存储。与以前的工作不同,它旨在设计一个离网设施。多联产厂为西班牙阿尔梅里亚的单户住宅提供电力、空间供暖和制冷、生活热水和淡水。主要的系统技术是光伏/热能收集器、反渗透和干燥剂空调。添加了铅酸电池存储作为电气系统的备用。该系统在 TRNSYS 模拟环境中运行了一年,时间步长为 5 分钟。进行了参数研究,以调查根据安装的电池数量对电网的依赖性。还进行了设计优化,以提供离网情况下的最佳系统配置。太阳能集热器效率为 0.55,干燥剂空调性能系数为 0.42。所有需求都得到了充分满足,一次能源节约和二氧化碳减排量达到100%。全年几个小时内电池充电状态最低达到30%。
住宅建筑供暖和发电可再生能源系统 (RESHeat) 已实现用于住宅建筑的供暖和制冷。RESHeat 系统的主要组件是热泵、光伏模块、跟踪太阳的太阳能集热器和光伏/热模块、地下热能存储单元和地面热交换器。RESHeat 系统的主要创新之一是由于地下储能单元而实现的高效地面再生。在供暖季节,大量的热量从地面吸收。地下储能单元允许恢复地面供暖能力,并使热泵的性能系数 (COP) 连续几年保持尽可能高。本文对作为 RESHeat 系统演示站点的住宅建筑进行了能源分析,并将 RESHeat 系统与建筑集成。经过实验验证的组件与建筑模型相结合,以在 TRNSYS 软件中实现系统性能。结果表明,由于地下储能单元,热泵的年平均 COP 为 4.85。 RESHeat 系统能够利用可再生能源和高效的地下储能系统完全满足建筑物的供暖需求。
• #1 CCHP 装置 - 600 kWe/700 kWth(加热)/400 kWth(冷却),电效率为 42%,热效率为 48.4%,总效率为 90.4%; • #2 吸附式制冷机(基于水-溴化锂),制冷功率分别为 150 和 250 kWth,性能系数 (COP) 均为 0.75; • 电制冷机 - 900 kWth; • #1 光伏 (PV) 系统,20 kWp,太阳能模块的平均效率为 19%; • #1 集成氢系统,由 #1 23 kW 碱性电解器、#2 标准条件下容量为 6000 l 的金属氢化物储氢罐和 #1 1 kW 的质子交换膜 (PEM) 燃料电池组成——在 eNeuron 期间安装; • #2 锂离子二次电池,容量为 5 kWh,每个电池通过 3 kW 逆变器连接到最大 2.4 kW 的电负载和电网——在 eNeuron 期间安装; • #2 电动汽车充电站,功率为 7 kW(单相)/22 kW(三相),供电电压为 230 V(单相)/400 V(三相),电网频率为 50 Hz——在 eNeuron 期间安装。