[4] Kisilevsky R. 从关节炎到阿尔茨海默病:关于淀粉样变性发病机制的最新概念。Can J Physiol Pharmacol,1987,65:1805-15 [5] György B、Lööv C、Zaborowski MP 等人。CRISPR/Cas9 介导的瑞典 APP 等位基因破坏作为早发性阿尔茨海默病的治疗方法。Mol Ther Nucleic Acids,2018,11:429-40 [6] Zetterberg H、Mattsson N. 了解散发性阿尔茨海默病的病因。Expert Rev Neurother,2014,14:621-30 [7] Jack CR Jr、Knopman DS、Jagust WJ 等人。阿尔茨海默病病理级联动态生物标志物的假设模型。Lancet Neurol,2010,9:119-28 [8] Ittner LM、Ke YD、Delerue F 等。tau 的树突状功能介导阿尔茨海默病小鼠模型中的淀粉样蛋白 β 毒性。Cell,2010,142:387-97 [9] Muralidar S、Ambi SV、Sekaran S 等。tau 蛋白在阿尔茨海默病中的作用:主要的病理因素。Int J Biol Macromol,2020,163:1599-617 [10] Wang X、Wang W、Li L 等。阿尔茨海默病中的氧化应激和线粒体功能障碍。 Biochim Biophys Acta, 2014, 1842: 1240-7 [11] Grothe M, Heinsen H, Teipel SJ. 成年年龄范围内以及阿尔茨海默病早期阶段胆碱能基底前脑萎缩。Biol Psychiatry, 2012, 71: 805-13 [12] He Y, Ruganzu JB, Jin H, et al. LRP1 敲低通过调节 TLR4/NF- κB/MAPKs 信号通路加重 Aβ 1-42 刺激的小胶质细胞和星形胶质细胞神经炎症反应。Exp Cell Res, 2020, 394: 112166 [13] Huang HC, Hong L, Chang P, et al.壳寡糖减弱Cu 2+诱导的细胞氧化损伤和细胞凋亡,涉及Nrf2激活。Neurotox Res,2015,27:411-20 [14] Tomljenovic L. 铝和阿尔茨海默病:经过一个世纪的争论,是否存在合理的联系?J Alzheimers Dis,2011,23:567-98 [15] Shen H,Guan Q,Zhang X,等。阿尔茨海默病神经炎症的新机制:肠道菌群介导的NLRP3炎症小体的激活。Prog Neuropsychopharmacol Biol Psychiatry,2020,100:109884 [16] Ferreira-Vieira TH,Guimaraes IM,Silva FR,等。阿尔茨海默病:针对胆碱能系统。Curr Neuropharmacol,2016,14:101-15 [17] Scannevin RH。针对神经退行性蛋白质错误折叠障碍的治疗策略。Curr Opin Chem Biol,2018,44:66-74 [18] Giau VV,Lee H,Shim KH 等人。CRISPR-Cas9 的基因组编辑应用促进阿尔茨海默病的体外研究。Clin Interv Aging,2018,13:221-33 [19] Gupta D,Bhattacharjee O,Mandal D 等人。CRISPR-Cas9 系统:基因编辑的新曙光。生命科学, 2019, 232: 116636 [20] Makarova KS, Wolf YI, Alkhnbashi OS, et al.更新了
销售名称entaibio subipanies注入108mg entaibio subtanious注入108mg注射剂申请类别(3)新的给药途径(功效或效果)维持治疗中等至严重的溃疡性结肠炎(仅当现有治疗是不足的情况下)的剂量和供应量的供应量相距两个星期。
2。lim DS,Triscott J. O'Brien的光肉瘤,与多西环素光毒性相关。澳大利亚J Dermatol。2003; 44:67 --- 70。 3。 Nanbu A,Sugiura K,Kono M,Muro Y,Akiyama M. Annular Elas-tolytic巨型细胞肉芽肿成功地用盐酸minocycline治疗。 Acta Derm Venereol。 2015; 95:756 --- 7。 4。 Jeha GM,Luckett KO,Kole L.阳光颗粒对强力霉素的反应。 JAAD案代表2020; 6:1132 --- 4。 5。 Kabuto M,Fujimoto N,TanakaT。通过长期使用盐酸米诺环素盐酸盐成功治疗了广义的环状弹性弹性细胞颗粒。 EUR J Dermatol。 2017; 27:178 --- 9。2003; 44:67 --- 70。3。Nanbu A,Sugiura K,Kono M,Muro Y,Akiyama M. Annular Elas-tolytic巨型细胞肉芽肿成功地用盐酸minocycline治疗。Acta Derm Venereol。2015; 95:756 --- 7。4。Jeha GM,Luckett KO,Kole L.阳光颗粒对强力霉素的反应。 JAAD案代表2020; 6:1132 --- 4。 5。 Kabuto M,Fujimoto N,TanakaT。通过长期使用盐酸米诺环素盐酸盐成功治疗了广义的环状弹性弹性细胞颗粒。 EUR J Dermatol。 2017; 27:178 --- 9。Jeha GM,Luckett KO,Kole L.阳光颗粒对强力霉素的反应。JAAD案代表2020; 6:1132 --- 4。 5。 Kabuto M,Fujimoto N,TanakaT。通过长期使用盐酸米诺环素盐酸盐成功治疗了广义的环状弹性弹性细胞颗粒。 EUR J Dermatol。 2017; 27:178 --- 9。JAAD案代表2020; 6:1132 --- 4。5。Kabuto M,Fujimoto N,TanakaT。通过长期使用盐酸米诺环素盐酸盐成功治疗了广义的环状弹性弹性细胞颗粒。EUR J Dermatol。2017; 27:178 --- 9。2017; 27:178 --- 9。
摘要 重力引起的意识丧失 (G-LOC) 是战斗机飞行员面临的主要威胁,可能会导致致命事故。高 +Gz(头到脚方向)加速度力会诱发脑出血,导致周边视力丧失、中央视力丧失(昏厥)和 G-LOC。我们尝试建立一个公式,使用脑氧合血红蛋白 (oxyHb) 值、身高、体重和身体质量指数 (BMI) 来预测 G-LOC。我们分析了 2008 年至 2012 年间测量的 249 名人体离心机受训者的脑氧合血红蛋白值。受训者暴露于两种离心机模式。一种是 4G–15s、5G–10s、6G–8s 和 7G–8s,不穿抗荷服(间隔 60 秒,发作率为 1G/s)。另一组为 8G-15s,起始速率为 6G/s,穿着抗荷服。我们使用近红外光谱仪 (NIRS)(NIRO-150G,日本静冈县滨松光子学株式会社,滨松)测量了受训者的脑氧合血红蛋白值。分析了以下参数。A)基线值为 +Gz 暴露前 30 秒的平均值。B)+Gz 暴露期间氧合血红蛋白的最大值。C)+Gz 暴露期间氧合血红蛋白的最小值。D)氧合血红蛋白从最大值到最小值的变化率(变化率)。使用逻辑回归分析进行统计分析,以建立预测 G-LOC 的公式。受训者的年龄为 24.1 ±1.7(S.D.)(范围,22 ~ 30)
图1多个系统萎缩的治疗方法这种形状说明了针对多系统萎缩(MSA)病理机制的各种治疗策略。MSA的特征是神经元丧失,神经胶质病和α-突触核蛋白夹杂物的积累。抗 - α突触核蛋白疗法包括 - 在诸如ANELE138B,清除剂,例如PD01A,PD03A,LU AF82422,TAK - 341和UB – 312和UB –312和UB –312和抑制方法之类的清除剂中的聚集。细胞疗法涉及修复和再生受损神经组织的间充质干细胞。能量代谢和INSU -LIN信号 - 靶向疗法包括脱齿素 - 4,泛氨醇和NAD +补充。抗炎性和神经保护疗法具有氟西汀,AAV2 - GDNF和KM819的化合物,可减少炎症并提供神经保护作用。细胞调节文本包括显示退化的神经元,α-突触核蛋白夹杂物,活化的星形胶质细胞和小胶质细胞,免疫 - 反应性T细胞,IM成对的线粒体,Pro - 炎性细胞因子,肌蛋白损失和髓质细胞质细胞胞质包含(GCIS)(GCIS)。此视觉代表提供了MSA中治疗策略及其细胞靶标的概述。
脓毒症是危重患者死亡的主要原因之一。尽管近年来医疗技术不断发展,但其发病率和死亡率仍然很高。这主要与延迟开始治疗和不遵守临床指南有关。人工智能(AI)是医学领域中一个不断发展的领域,已用于开发各种创新的临床决策支持系统。它在预测患者的临床状况和协助临床决策方面显示出巨大的潜力。人工智能衍生的算法可以应用于脓毒症的多个阶段,例如早期预测、预后评估、死亡率预测和最佳管理。本综述介绍了人工智能在脓毒症临床决策支持方面的最新文献,并概述了人工智能在脓毒症的预测、诊断、亚表型、预后评估和临床管理中的应用。此外,我们讨论了在临床上实施和接受这种非传统方法所面临的挑战。
摘要:脓毒症是一种危及生命的宿主对感染的反应失调,会导致器官功能障碍,被认为是全球死亡的主要原因之一,尤其是在重症监护病房 (ICU)。此外,脓毒症仍然是一种神秘的临床综合征,其复杂的病理生理学尚未完全了解,并且在临床表现、患者对目前可用的治疗干预和结果的反应方面都存在很大的异质性。这种异质性是我们寻求改善脓毒症重症监护患者治疗的主要障碍;因此,识别临床表型是绝对必要的。虽然这可能被视为一项极其困难的任务,但如今,人工智能和机器学习技术可以用来量化脓毒症人群中个体之间的相似性,并将它们区分为不同的表型,不仅在温度、血流动力学或器官功能障碍类型方面,而且在液体状态/反应性、ICU 中的轨迹和结果方面。希望我们最终能够确定从治疗干预中受益的脓毒症患者亚群,以及在疾病过程中应用干预的正确时机。
癫痫是一种病因多样的疾病,但遗传因素被认为在大多数患者中发挥作用。对于婴儿型发育性和癫痫性脑病 (DEE) 患者,现在超过 50% 的患者可获得基因诊断。人们有很大动力利用这些分子诊断数据来帮助指导治疗,因为患有 DEE 的儿童通常患有耐药性癫痫发作以及与大脑癫痫样活动相关的发育障碍。精准医疗方法有可能显著改善这些儿童及其家人的生活质量。目前,可以针对诊断为婴儿型 DEE 的许多遗传原因的患者进行治疗,包括编码钠或钾通道亚单位的基因、结节性硬化症和先天性代谢疾病。精准医疗可能指更明智地选择传统抗癫痫药物、以前用于其他适应症的药物、新型化合物、酶替代或基因治疗方法。
摘要糖尿病性视网膜病(DR)和糖尿病性黄斑水肿(DME)是糖尿病(DM)患者的微血管并发症之一,如果没有早期诊断并进行适当治疗,可能会导致失明。可以使用各种技术诊断和治疗这两种疾病。治疗方式包括激光光凝治疗,玻璃体切除术手术,眼内类固醇注射和抗血管内皮生长因子(抗VEGF)注射。这些方法与代谢控制结合使用时可以帮助避免失明。这些建议是通过使用基于证据的医学原则来帮助医学专业人员(尤其是眼科医生)来识别和治疗DME案件的。主要目标是提供共识建议,并希望减少印度尼西亚DR和DME引起的失明发病率。