阿片类药物危机在直接健康和经济影响之外产生了更广泛的社会危害,从而通过对儿童,家庭和社区的不利溢出来影响非用户。我们研究了旨在通过检查其对亲密伴侣暴力(IPV)的影响来减少阿片类药物对妇女福祉的过度处方的供应方面的溢出效应。使用有关执法事件报告的行政数据,结合了严格的强制性访问处方药监控计划的准确差异,我们发现这些政策通过大大减少IPV和IPV影响IPV影响的损害9至10%的百分比,从而为女性带来了下游益处。最强的影响是由基线(包括非西班牙裔白人)在基线时消耗率较高的群体经历的。但是,我们还发现,涉及海洛因的IPV事件的大幅增加,这表明将其替换为非法药物消费。我们的结果强调了需要确定容易转变为非法阿片类药物的高风险群体,并通过基于证据的政策来解决这种风险。考虑对IPV的影响增加了阿片类药物流行的估计社会负担。
靶向阿尔法治疗是基于将发射阿尔法的放射性核素与选择性递送载体(例如肽、抗体、纳米粒子)相结合的应用。从靶向放射性核素治疗概念的角度来看,这是理想的,它可以最大限度地损害靶细胞,同时最大限度地减少对周围健康组织的毒性。尽管有一些有希望的临床结果,但仍需要进行大量研究来优化靶向阿尔法治疗的实施。仍然存在涉及微剂量学方面的问题,优化靶向阿尔法治疗放射性药物的配方以增强稳定性。为了加强对含有放射性药物的阿尔法发射体在临床应用中的治疗效果的理解,需要进行更多严格控制的研究,从而促进更全面地了解它们的治疗潜力。因此,本出版物提供了有关标准化这些放射性药物生产并使结果更准确和可转化的信息。
摘要临床前研究对于有效评估 TAT 放射性药物至关重要。鉴于这些放射性核素的供应链目前并不理想,必须改进动物研究,以生产出具有最大临床潜力、最具转化性的 TAT 药物。载体设计至关重要,强调载体、靶标和放射性核素之间和谐的物理和生物学特性。α 发射放射性核素的稀缺性仍然是一个重要的考虑因素。锕-225 和铅-212 似乎是现阶段最容易获得的放射性核素。研究人员可用的动物模型包括异种移植、同种异体移植和 PDX(患者来源的异种移植)模型。还简要探讨了对 α 发射体进行成像的新兴策略。最终,临床前研究必须解决两个关键方面:(1) 提供平衡安全性和有效性的宝贵见解,以及 (2) 为 TAT 药物的最佳剂量提供指导。
据我们所知,这是第一例与使用 GH 促泌剂有关的 EMN 病例。由于此类制剂供应充足,医生必须意识到这种副作用,并反对在没有医学指征的情况下使用它们,同时考虑到 EMN 恶性转化的风险,尤其是
放射性药物的定义是“由一种或多种放射性核素物质与药剂(冷包)组合而成的用于诊断和治疗人类疾病的药品。但有些放射性核素可以不与药剂组合而作为放射性药物使用。”
本研究旨在验证改进的 QuEChERS 方法,然后进行液相色谱串联质谱分析,以测定电子舞曲派对 (EDM) 参与者口腔液中的 51 种精神活性物质并筛查 22 种物质。将未受刺激的口腔液收集到聚丙烯管中,并储存在 − 20 º C 的玻璃瓶中。用乙腈:水和 MgSO 4 /NaOAc 提取样品,然后用一级二级胺和 MgSO 4 净化。样品储存条件的有效性与使用 Quantisal ™ 缓冲液时相当,在 − 20 º C 下储存长达 72 小时后,所有物质的浓度均无明显损失 ( < 15%)。该方法得到了令人满意的验证,检测限 (LOD) 和定量限 (LOQ) 分别范围为 0.04 至 0.5 ng/mL 和 0.1 – 1.5 ng/mL,并已应用于 62 个真实样品的分析。检测出的主要物质是 3,4-亚甲基二氧基甲基苯丙胺 (MDMA) (< 0.5 – 829 ng/mL) 和/或亚甲基二氧基苯丙胺 (MDA) (10.1 – 460.6 ng/mL),在 27 个样本中发现,以及可卡因 (13.0 – 407.3 ng/mL) 及其代谢物 (苯甲酰爱康宁 0.17 – 214.1 ng/mL;爱康宁甲酯 1.8 – 150.1 ng/mL),在 8 个样本中检测到甲基苯丙胺 (11 – 439 ng/mL),以及 MDMA 和 MDA;在两起报告为“摇头丸”摄入的案件中检测到了 eutylone (4.7 和 24.1 ng/mL)。对自我报告的药物使用情况和口腔液体分析结果进行比较表明,EDM 参与者使用非法物质的情况经常被低估,他们通常不知道自己使用了什么物质。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecom-mons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
开发新型癌症治疗方法是一项具有挑战性的任务,将转录特征与大规模药物反应数据相匹配的计算技术可以使这项任务受益。在这里,我们介绍了“retriever”,这是一种基于来自 LINCS-L1000 项目的数百种化合物的细胞反应谱来提取强大的疾病特异性转录药物反应谱的工具。我们使用 retriever 提取三阴性乳腺癌 (TNBC) 细胞系的转录药物反应特征,并将其与单细胞 RNA 测序乳腺癌图谱相结合,以预测拮抗 TNBC 特异性疾病特征的药物组合。在系统地测试了 152 种药物反应谱和 11,476 种药物组合后,我们确定激酶抑制剂 QL-XII-47 和 GSK-690693 的组合是 TNBC 治疗最有希望的候选药物。我们的新计算方法可以识别针对个别患者特定肿瘤细胞类型和亚群的药物和药物组合。因此,它非常适合开发新的个性化癌症治疗策略。
自亨利·贝克勒尔于 1896 年发现天然辐射、居里夫人发现镭和钋并因此获得诺贝尔奖、被誉为放射性药物之父的威廉·H·布赖纳为其实践铺平道路以来,放射性药物在医学中的应用不断发展壮大。2023 年,出现了一些关键趋势,影响着阿尔法发射体治疗的前景和应用。已有超过 17 亿美元的资金流入放射性药物领域,凸显了该治疗领域的潜力和强劲增长。在过去一年中,出现了新的收购、发布和交易,涉及新型放射治疗药物和新创建的肽-放射性同位素药物偶联物。监管机构已为放射性药物的激增做好了准备,首批 CDRP 计划旨在加快商业制造、FDA 批准和营销授权。