•控制系统的保护性继电器和组件,这些系统对测得的电量响应并提供保护功能; •正确操作保护功能所需的通信系统; •电压和当前的传感设备,提供了正确操作保护功能所需的输入; •与保护功能相关的车站直流电源(包括电池电池,电池充电器和非电池基于DC电源);和/或•通过断路器或其他中断设备的行程线圈与保护功能相关的控制电路。此术语也用于其他标准,如下所示。PRC-005-7 SDT有义务审查其他标准,在该标准中,该术语用于确定可靠性差距或冗余是否由拟议的修订为定义的术语创建。PRC-005-7 SDT已确定所提出的修改定义不会改变其他要求或定义的可靠性。更改了保护系统的定义,以确保所有可靠性标准之间的统一性。控制系统的组件对测量的电量响应并提供保护功能提供相同的功能,从而给散装电力系统带来相同的风险,与保护性继电器相同。在某些标准(例如,PRC-019和PRC-24)中已经实现和解决了此类组件的风险,但至关重要的是,这些设备在配置,物理和网络安全性,操作,操作以及冗余性方面均均匀地接受了它们对散装电气系统的功能和风险。
这项工作研究了铟镓砷 (InGaAs) SOI-FinFET 中界面缺陷在高性能应用中的可靠性。In 0.53 Ga 0.47 As 是一种很有前途的下一代晶体管材料,因为它具有高电子迁移率,这对于高速和高频应用至关重要。然而,界面陷阱电荷 (ITC) 的存在会严重影响器件的性能和可靠性。我们全面分析了 InGaAs SOI-FinFET 中的 ITC,研究了它们对线性性能参数(如 VIP2、VIP3、IIP3、IMD3、HD2 和 HD3)的影响。所有结果表明,优化界面质量对于提高 InGaAs SOI-FinFET 的可靠性和性能至关重要。这项工作为缺陷机制提供了宝贵的见解,并为改进制造工艺以实现更可靠的高性能 InGaAs-SOI-FinFET 提供了指导。因此,基于 InGaAs 的 FinFET 是最适合下一代使用的高性能半导体器件。 InGaAs 具有优异的电子迁移率和高饱和速度,为高频和高速应用提供了显著的优势,使其成为硅的理想替代品。
本报告介绍了卫生监察员办公室 (OHO) 对 2021 年 4 月至 2022 年 7 月期间雷德克利夫医院提供的产科服务方面进行的调查结果。调查重点关注围产期护理、药物安全、临床文档的完整性和临床事件管理治理等方面。此次调查是在大都会北医院和卫生服务中心 (MNHHS) 发出通知后由 OHO 发起的,该通知涉及内部投诉人对雷德克利夫产科服务提出的特定担忧。此通知是对向 MNHHS 行政部门提出的内部投诉的回应,该投诉适当地承认了投诉人提出的潜在系统性担忧,并通知 OHO 独立评估这些问题。
执行摘要 军事能力的使用寿命大大超过实现关键功能的商用电子系统的设计寿命。随着电子行业继续投资于定期增加功能并减小物理尺寸,过时也与不可避免的物理现象和影响有关,这些现象和影响会降低小型化半导体技术和电子系统的可靠性,无论是在使用还是存储过程中。从设计上讲,电子技术在商业保修期之外几乎没有可靠性裕度。高度小型化的电子设备越来越多地出现间歇性故障或其他违反直觉的行为,因为组件会退化,而不是表现出明显的故障。系统可靠性也会随着系统复杂性而降低,由于软件难以正确运行,软件仍然是电子系统整个生命周期可靠性的主要限制因素。由于需要重新构建软件才能通过多核处理器获得所需的性能,多核处理器的商业趋势将加剧这一问题。过时和可靠性相互关联的问题影响着所有商用电子系统。这些担忧的范围很广,从使用尖端技术的自然影响(不成熟的技术很少高度可靠)到计划报废,计划报废是指故意将部件设计为只能在保修期内使用,客户有义务再次购买。无论出于何种原因,国防部都要承担维持可行能力的成本增加的影响,因为需要实施重大系统更新或更换,以确保大多数依赖电子系统的军事能力的长期可行性和可负担性。简单的反应,如淘汰旧能力和购买新能力,只会放大影响,因为报废速度可能会加快,保修期不太可能延长,制造商继续在保修期之外降低可靠性裕度。本报告调查了一些相互关联的问题,包括基础电子、电子系统可靠性、报废、软件可靠性、这些对军事应用的典型长使用寿命的影响、传统后勤反应(例如最后一次购买)的局限性,以及对这些担忧的一些新反应。技术重点略微偏向飞机上的嵌入式计算系统,但讨论适用于任何依赖某种电子系统的军事能力。目的是为讨论潜在的协调响应提供一些基础,并指出其中涉及许多技术和非技术因素。当前的国防能力计划 (DCP) 包括几个旨在解决过时问题的项目,其中相当一部分特别提到了与电子产品过时或可靠性相关的担忧。商业趋势可能会增加这些担忧对能力开发过程的影响。
R. J. O'Dowd 空中作战部 国防科学技术组织 DSTO-TR-2437 摘要 军事资产的使用寿命大大超过其中使用的商业电子系统的设计寿命。电子产品的过时性越来越多地与物理特性相关联,这些特性会降低组件和系统的可靠性,无论是在使用还是存储过程中,商业保修期之外的设计余地很少。然而,软件内容仍然是电子系统可靠性的主要限制因素,新兴的商业趋势加剧了这一问题。因此,管理和维持电子系统的传统方法越来越低效且成本高昂。本报告调查了电子系统过时性和可靠性的相互关联问题,并描述了针对这些问题的新反应。
残骸重建和一般紧固件装配过程。在一项关于航空工业点云配准的研究中,孙等[6,7]利用三维点云和测量技术开发了一套拼接飞机残骸的系统。结果表明,其粗配准精度为0.6毫米,可接受的配准精度为0.2毫米。王等[8]提出了一种用于飞机点云配准的通用密度不变框架。结果表明,与其他研究[9-11]相比,他们的方法具有更好的精度(0.6毫米——1.0毫米),以均方根误差(RMSE)评估。虽然精度有所提高,但所提出的方法适用于整个扫描飞机,而不是特定的部件。徐等[12]提出了一种紧固件装配的配准方法,其中利用局部几何特征和迭代最近点(ICP)算法。该配准方法用于扫描数据和 CAD 模型之间。结果表明,与单独使用 ICP 算法相比,所提出的方法具有更好的效率。但是,所提出的注册方法的不确定性并未披露。
论文委员会:Olivier Latry,鲁昂大学助理教授(HDR),推荐人 Nathalie Malbert,波尔多第一大学教授,推荐人 Dominique Baillargeat,利摩日大学教授,XLIM,校长 Denis Barataud,利摩日大学教授利摩日,XLIM,审查员 Gaudenzio Meneghesso,帕多瓦大学教授,审查员 Raymond Quéré,利摩日大学教授,XLIM,审查员 Jean-Luc Roux,法国国家太空研究中心图卢兹工程师,审查员 Olivier Jardel,泰莱阿莱尼亚宇航公司图卢兹工程师,邀请 Didier UMS Semiconductors 工程师 Floriot 邀请 Thalès Alenia Space Toulouse 工程师 Jean-Luc Muraro 邀请
在我们校园里!nus save将在1月8日至11日举行生物布利茨,它将对不同的野生动植物进行5次野生动植物的调查,其中包括晚上一个。ࢍࢍࣰ࣯࢈ࢉࢉࣩ࣭࣭࣪࣫࣬ߦߧߧߨߨߩߪߪ߫߫ߡߢߣߣߤߣߤߤߤޔޔޔޕޕޖޖޗޗޗޗޘޘޙޙޙޛޛޛޛޛޛۙ ۚ ۛ ۚ ۛ ۛ ۛ
分布式 PLC 架构如图 2 所示,是大型平台的典型架构。在这种类型的系统中,平台的每个主要单元都由单独的 PLC 控制。有一个平台通信网络连接 PLC 和用于人机界面 (HMI) 的计算机。通信网络主要由 HMI/SCADA 软件用于向 PLC 发送命令和从 PLC 接收信息。PLC 之间传递的信息通常有限。每个主要单元通常都有一个本地操作员面板,以允许人员仅与该单元交互。在这种类型的架构中,安全系统通常由其中一个 PLC 处理。通常,平台通信网络是冗余的。如果主网络发生故障,通信将自动切换到冗余通信网络。平台由陆上办公室通过微波/无线电/卫星链路进行监控。陆上办公室可以执行一些有限的控制功能,特别是当平台因恶劣天气而撤离时。