加州的沿海海崖侵蚀威胁着财产和公共安全,而沿海海滩侵蚀则威胁着沿海旅游经济。虽然沿海河流、海崖和沟壑为加州海滩提供了大部分的滨海物质,但这些来源的相对贡献受到质疑。必须准确量化这些海滩沉积物来源,以制定适当的沿海区域管理解决方案。本研究使用机载光探测和测距 (LIDAR) 评估了海崖和沿海沟壑海滩沉积物对海滨滨海单元的贡献。将海崖和沟壑海滩沉积物贡献与之前研究中估计的沿海河流海滩沉积物贡献进行了比较。这项研究是在 1998 年 4 月至 2004 年 4 月的一段相对干旱的时期进行的。结果表明,在研究期间,海崖为滨海单元提供了约 67% 的海滩大小沉积物,其次是沟壑和河流,分别提供了 17% 和 16%。总体积海崖侵蚀率用于反向计算研究期间的年平均海崖表面后退率。这些速率范围为 3.1 至 13.2 厘米/年,而 Oceanside 滨海单元的平均速率为 8.0 厘米/年。将这些结果与以前的研究进行比较,表明相对海崖沉积物贡献可能高于之前的估计。相反,与
摘要:本文提出了一个实验程序,用于在高达208 bara的高架压力下生成CO 2的水性纳米泡分散。它直接设置了总体积,外部压力和温度,并且整体组成是由水纳米泡分散体恒定质量扩展到具有材料平衡的低压(例如大气压)的。脱离离子水的结果表明,纳米泡分散体中的CO 2含量随系统压力而增加。在207.8 bara处获得了最大的CO 2浓度2.3 mol/L,该浓度比207.8 Bara时CO 2的固有溶解度高42.9%。在138.9 bara时观察到最大的溶解度增强,52.8%,与固有的溶解度相比。还用基于甲酸钠的缓冲溶液测试了CO 2的水纳米泡分散体,这在208 Bara时导致CO 2的1.52 mol/L的CO 2。这比具有相同离子强度的氯化钠溶液中Co 2,0.86 mol/L的固有溶解度高77%。从实验数据的热力学分析中的一个重要观察结果是,纳米泡本身可能不是CO 2的主要存储,但是它们的存在可以提高CO 2的水相过饱和水平。这与使用纳米跟踪分析直接测量气泡性能一致,其中CO 2作为气泡的含量比CO 2的固有溶解度小得多,即使气泡数密度为10 8 ml -1,并且气泡半径大于100 nm。
摘要 目的 研究房颤 (AF) 患者 MRI 上血管性脑病变的患病率、体积和分布的性别差异。方法 在这项横断面分析中,我们纳入了瑞士多中心房颤研究 (SWISS-AF) 中的 1743 名 AF 患者(27% 为女性),这些患者均有基线脑 MRI。我们用多变量逻辑回归比较了男性和女性之间大面积非皮质或皮质梗塞 (LNCCI)、小面积非皮质梗塞、微出血 (MB) 和白质高信号 (WMH,Fazekas 评分≥2 为中度或重度) 的存在和总体积。我们生成了基于体素的概率图来评估病变的解剖分布。结果 我们没有发现强有力的证据表明女性与所有缺血性梗塞(LNCCI 和 SNCI 合并;调整后的 OR 0.86,95% CI 0.67 至 1.09,p=0.22)、MB(调整后的 OR 0.91,95% CI 0.68 至 1.21,p=0.52)和中度或重度 WMH(调整后的 OR 1.15,95% CI 0.90 至 1.48,p=0.27)的患病率存在关联。然而,女性的总 WMH 体积比男性大 17%(多变量调整后的乘积效应 1.17,95% CI 1.01 至 1.35;p=0.04)。病变概率图显示,男性和女性的缺血性梗塞均以右半球为主,而 WMH 分布对称。结论 女性白质病负担高于男性,而其他病变的体积和患病率并无差异。我们的研究结果强调了控制 AF 患者脑小血管病风险因素的重要性,尤其是对女性患者而言。
摘要:可对富血管颅内肿瘤进行术前栓塞以减少切除期间的出血并发症。准确的肿瘤血管映射对于正确设定栓塞指征和评估所进行的栓塞都是必要的。我们前瞻性地研究了全脑和选择性实质血容量 (PBV) 平板探测器计算机断层扫描灌注 (FD CTP) 成像在富血管颅内肿瘤患者术前血管造影和栓塞中的作用。对 5 名转诊进行肿瘤切除的患者进行了全脑 FD CTP 成像,从主动脉根部注射造影剂并在硬脑膜供血动脉中选择性注射造影剂。在栓塞前后获得了区域相对 PBV 值。还确定了具有选择性颈外动脉 (ECA) 供应量的肿瘤总体积和栓塞后断血管的肿瘤体积。所有患者(包括四名女性和一名男性)的平均年龄为 54.2 岁(范围为 44-64 岁),均在进行 PBV 扫描时未发生不良事件。平均 ECA 供应量为 54%(范围为 31.5-91%)。平均栓塞肿瘤体积为 56.5%(范围为 25-94%)。相对 PBV 值从栓塞前的 5.75 ± 1.55 降至栓塞后的 2.43 ± 1.70。在一名患者中,由于认为栓塞不利于切除而未进行栓塞。脑肿瘤的血管造影 FD CTP 成像可以对单个肿瘤供血动脉进行 3D 识别和量化。此外,该技术还可以监测术前血管内肿瘤栓塞的疗效。
简介:实现主要稳定性,它是指放置后立即植入牙齿的机械稳定性,对于成功的骨整合至关重要,尤其是在立即植入物和骨质受损的情况下。然而,尽管牙科植入技术的进步,但对植入物放置过程中骨骼植入物相互作用及其对主要稳定性的影响的知识有限。为了满足这一需求,本研究旨在研究新的锥形植入物设计的主要稳定性(B,Thommen Medical AG,图。1A)使用虚拟稳定性测试。圆柱植入物设计(A,Thommen Medical AG,图1a)用作对照。使用了源自不同钻孔方案的三种不同截骨术类型I,II和III(图1B)。方法:本研究评估了四种植入物 - 骨切开术组合的主要稳定性(AI,AII,BII,BIII,图。1ab)在牛小梁骨样品中使用实验和有限元分析的ABAQUS/显式分析的组合。该低密度骨模型被细分为两个BV/TV(骨体积/总体积)范围:0.16-0.26和0.27-0.38。为了评估一级稳定性,通过将植入物垂直取代其轴直至塌陷,将植入物骨系统加载到压缩模式下。因此,将骨样品从µCT扫描中重建,转换为有限元网格,并与植入物结合到模拟模型。将植入物建模为刚体。该研究量化了四种保留的植入术组合的插入扭矩(IT),刚度(K)和最终推入/拉出力(UF)。最终力(UF)可以用作主要稳定性的客观指标,因为它可以量化植入物骨骼分数的承重能力。使用与盒子图所示的成对比较,使用了指定的BV/TV范围内不同版本的性能,采用了描述性统计。
在小鼠脑jiang-yang Zhang博士中进行扩散张量成像的技术。 NMR研究助理教授Russell H. Morgan放射学科学系Johns Hopkins大学医学院神经科学研究介绍,老鼠模型在促进我们对大脑及其疾病的知识方面发挥了重要作用。 要研究小鼠神经解剖学,尤其是由基因突变或病理引起的神经解剖学的变化,需要新颖的成像工具。 扩散张量成像(DTI)是一个很好的候选者,因为它可以可视化大脑中的白质(WM)结构,并已用于研究神经系统疾病,例如多发性硬化症和阿尔茨海默氏病。 即使DTI在诊所经常进行,但小鼠大脑的DTI仍然是一项艰巨的任务。 在总体积期间,小鼠大脑比人脑小约1000倍。 人脑DTI的当前分辨率约为每个像素1-2 mm。 为了实现相同的相对分辨率,我们需要使用特殊技术来实现小鼠脑DTI的分辨率为0.1-0.2 mm。 小鼠脑DTI的技术挑战在小鼠大脑的DTI中的主要技术挑战是实现高空间分辨率,同时保持令人满意的信号与噪声比(SNR)。 dTI被称为差的SNR技术,因为扩散加权图像中的信号幅度通过扩散敏化梯度减弱。 为了达到令人满意的SNR,大多数小鼠脑DTI实验都是在具有定制线圈的高场系统上进行的。在小鼠脑jiang-yang Zhang博士中进行扩散张量成像的技术。 NMR研究助理教授Russell H. Morgan放射学科学系Johns Hopkins大学医学院神经科学研究介绍,老鼠模型在促进我们对大脑及其疾病的知识方面发挥了重要作用。要研究小鼠神经解剖学,尤其是由基因突变或病理引起的神经解剖学的变化,需要新颖的成像工具。扩散张量成像(DTI)是一个很好的候选者,因为它可以可视化大脑中的白质(WM)结构,并已用于研究神经系统疾病,例如多发性硬化症和阿尔茨海默氏病。即使DTI在诊所经常进行,但小鼠大脑的DTI仍然是一项艰巨的任务。在总体积期间,小鼠大脑比人脑小约1000倍。人脑DTI的当前分辨率约为每个像素1-2 mm。为了实现相同的相对分辨率,我们需要使用特殊技术来实现小鼠脑DTI的分辨率为0.1-0.2 mm。小鼠脑DTI的技术挑战在小鼠大脑的DTI中的主要技术挑战是实现高空间分辨率,同时保持令人满意的信号与噪声比(SNR)。dTI被称为差的SNR技术,因为扩散加权图像中的信号幅度通过扩散敏化梯度减弱。为了达到令人满意的SNR,大多数小鼠脑DTI实验都是在具有定制线圈的高场系统上进行的。强磁场的缺点是它缩短了组织t 2,而加长组织t 1。高场系统比1.5特斯拉或3特斯拉磁铁具有更严重的场不均匀性。简短的T 2和场不均匀性使得通常用于临床DTI的回声平面成像(EPI)的采集类型,在高场系统上很难。除了分辨率挑战外,DTI数据通常还被受试者运动或梯度涡流引起的伪像所损坏。在体内实验期间的受试者运动可以通过更好的动物约束和呼吸触发来最小化。涡流可以通过调整梯度预先强调来显着降低。即使面临这些挑战,近年来,小鼠大脑的DTI也取得了许多进步。表1列出了几个DTI实验及其成像参数。在体内DTI获得的最佳分辨率约为0.1 mm x 0.1 mm x 0.5 mm [1],EX Vivo DTI获得的最佳分辨率为0.02 mm x 0.02 mm x 0.02 mm x 0.3 mm [2]。应用程序分辨率和成像参数
摘要:收割机自动记录的数据是一种很有前途的、可能非常有用的科学分析信息来源。大多数研究人员已将 StanForD 文件用于此目的,但这些文件很难获取,需要进行一些预处理。本研究利用了类似数据的新来源:JDLink,这是一项由机器制造商运营的基于云的服务,可实时存储来自传感器的数据。此类数据量巨大,难以理解和有效处理。数据挖掘技术有助于在此类数据库中发现趋势和模式。使用经典回归(线性和对数)、聚类分析(树状图和 k 均值)和主成分分析 (PCA) 分析了在波兰东北部工作的两台中型收割机的记录。线性回归表明,树木的平均大小是对每立方米燃料消耗和生产率影响最大的变量,而每小时燃料消耗也取决于低速行驶距离或高发动机负荷时间份额等因素。聚类和 PCA 的结果更难解释。树状图显示了最不相似的变量:每天采伐的总体积、每天的总燃料消耗和高转速 (RPM) 的工作时间份额。K 均值聚类使我们能够识别特定变量聚类更突出的时期。尽管 PCA 结果解释了近 90% 的方差,但机器之间的结果尚无定论,因此需要在后续研究中进行仔细审查。生产率值(平均约 10 m 3 /h)和燃料消耗率(平均 13.21 L/h,1.335 L/m 3)与其他作者在可比条件下报告的结果相似。本研究获得的一些新指标包括,例如,低速行驶距离(每天约 7 公里)或发动机在低、中或高负荷下运行的时间比例(分别为 34%、39% 和 7%)。本研究的假设是使用不从外部来源补充的数据,并且尽可能少地进行处理,这将分析方法限制在无监督学习上。在后续研究中扩展数据库将有助于监督学习技术在建模和预测中的应用。
摘要:收割机自动记录的数据是一种很有前途的、可能非常有用的科学分析信息来源。大多数研究人员已将 StanForD 文件用于此目的,但这些文件很难获取,需要进行一些预处理。本研究利用了类似数据的新来源:JDLink,这是一项由机器制造商运营的基于云的服务,可实时存储来自传感器的数据。此类数据量巨大,难以理解和有效处理。数据挖掘技术有助于在此类数据库中发现趋势和模式。使用经典回归(线性和对数)、聚类分析(树状图和 k 均值)和主成分分析 (PCA) 分析了在波兰东北部工作的两台中型收割机的记录。线性回归表明,树木的平均大小是对每立方米燃料消耗和生产率影响最大的变量,而每小时燃料消耗也取决于低速行驶距离或高发动机负荷时间份额等因素。聚类和 PCA 的结果更难解释。树状图显示了最不相似的变量:每天采伐的总体积、每天的总燃料消耗和高转速 (RPM) 的工作时间份额。K 均值聚类使我们能够识别特定变量聚类更突出的时期。尽管 PCA 结果解释了近 90% 的方差,但机器之间的结果尚无定论,因此需要在后续研究中进行仔细审查。生产率值(平均约 10 m 3 /h)和燃料消耗率(平均 13.21 L/h,1.335 L/m 3)与其他作者在可比条件下报告的结果相似。本研究获得的一些新指标包括,例如,低速行驶距离(每天约 7 公里)或发动机在低、中或高负荷下运行的时间比例(分别为 34%、39% 和 7%)。本研究的假设是使用不从外部来源补充的数据,并且尽可能少地进行处理,这将分析方法限制在无监督学习上。在后续研究中扩展数据库将有助于监督学习技术在建模和预测中的应用。
项目将接收由第三方在场外卫星拆包设施中加工的转移有机废物或有机基质,但直接运送到项目的 FOG 或 DAF 除外。项目将仅接受与 Linden Renewable Energy, LLC 签订合同的第三方拆包设施加工的有机基质。所有此类拆包设施均应获得完全许可,并拥有开展业务所需的必要 NJDEP 许可/批准。如果任何拆包设施位于 Union 县,它们将遵守该县的固体废物管理计划。拆包过程会去除消费者包装并产生 AD 可行的泥浆原料。然后,第三方使用容量为 6,000 加仑的油罐车将该有机基质泥浆原料运送到项目现场,并最终通过驳船运送。尽管在离开拆包设施之前已经过测试,但到达项目后,如果一卡车或一驳船的有机基质浆液因任何原因被拒收,则应根据联合县的固体废物管理计划处理该浆液。项目将接收有机基质浆液原料,并利用厌氧消化产生可再生天然气、液体消化物和可销售的土壤改良剂(即脱水固体)。液体消化物随后将在现场加工以生产液体有机肥料。项目将产生三种形式的固体废物。第一种是行政大楼和其他建筑物和围墙内操作人员产生的典型城市固体废物,第二种是项目除砂作业捕获的砂砾。该操作旨在去除任何不可消化的材料,这些材料主要由小颗粒大小的沙子和砂砾组成。这样做是为了限制沙子/砂砾材料对所有泵送和管道系统的影响,并保持生物反应器容量的完整性。总体积小于每天 1 立方码。第三是废活性炭和金属氧化物介质。活性炭主要用于我们的气味控制单元和沼气升级系统 (BUS) 单元。BUS 单元需要活性炭来控制原料沼气中的少量 H2S。少量金属氧化物介质用作尾气抛光剂,可将 H2S 去除至 1 PPM,活性炭用于径向碳吸附器,以控制围墙/建筑物和工艺罐顶部空间中的气味。活性炭/金属氧化物介质将以每年 45-65 吨的速度更换。所有这些材料都是无害的,没有特殊处理要求,应按照联盟的规定进行处置