摘要:本文提出了 VLSI 设计流程中综合阶段和 CTS(时钟树综合)阶段的总功率和延迟优化流程。需要多 Vt 设计方法来减少漏电流。在本文中,使用两种 Vt 组合:1.高 Vt 和 2.低 Vt,用于相同的逻辑功能。第三种类型是标称 Vt,在此流程中是可选的,实现流程使用不同的方法在设计中使用不同类型的单元的混合来在泄漏和性能目标之间进行权衡。在本文中,将使用 LVT 单元执行 RTL 综合和逻辑优化,以优化高速单元的时序以满足时序目标。然后,一旦满足延迟,将以目标松弛为零实施泄漏功率优化,并且仅使用 HVT 单元进行泄漏功率优化。
PV许可证描述应包括以下信息:‘PV太阳系XX面板 @ XXX W/面板; xx sq ft/ panel;总系统区域xxx sq ft;总直流输出xxx kW;年度输出xxx kwh;总交流输出XX kW允许的允许包括电池,包括以下信息:'储能系统总功率(kW);近年来,储能容量(kWh)'在百慕大分布式太阳能发电的总容量显着提高。为了维护网格的完整性,并促进了在签发完成认证后,系统的更平稳的互连和启动,我们将要求BELCO的确认,以确保该拟议的系统与其分配网络兼容。本确认信(由Belco向Belco提供了整个标准合同以进行审查后,BELCO发行了),应从2024年10月1日开始作为PV和/或电池申请的一部分提交。
克拉马斯瀑布市地热资源丰富。1964 年,俄勒冈理工学院 (OIT) 将其克拉马斯瀑布校区迁至相对较浅的地热储层,利用热水为校园建筑供暖(16 栋建筑,建筑面积约 100 万平方英尺)。地热区域供热系统使用三个生产井供应 192⁰F 至 197⁰F 的热水。废水通过两个注入井返回储层。2010 年,地热供热系统进行了改造,包括一个 280 kW(总功率)的 Pratt & Whitney PureCycle 模块化有机朗肯循环 (ORC) 发电厂和一个水冷塔。ORC 循环用于将低温热能转化为电能。这是世界上第一个大学校园地热热电联产项目。
根据X类X类映射的区域(即,非重组或植被,根据昆士兰1999年昆士兰州的植被管理法案)的要求,选择了该项目开发的首选位置。项目大小的最大潜在干扰足迹为62公顷(即项目网站)。用于太阳能电池板的区域可能会更少,最小足迹为45公顷。一旦箭头CSG上板,就可以确认确切的足迹,一个独立承包商来执行所需的作品范围。箭头CSG根据20%可再生能源渗透的目标确定了最大和最小项目足迹,该目标定义为通过可再生能源提供的总功率分数。拟议的17MW生产与BES结合使用,而天然气的使用达到了20%的要求,同时需要少于62公顷的土地清理。
为遵守现有的二氧化碳法规,必须在能源系统中大规模引入可再生能源。考虑到目前的电力池,可再生能源的大量使用意味着化石燃料发电厂的效率和经济损失很高,因为它们主要用于调节系统,预计会经常停机。在此框架下,建议将联合循环发电厂 (CCPP) 与储能技术(如电转气 (PtG))相结合,通过转移瞬时过剩电力来实际减少其最低投诉负荷。电转气通过水电解产生氢气,然后与二氧化碳结合产生甲烷。本研究的主要创新之处在于通过使用电转气作为减少最低投诉负荷的工具,提高了联合循环的灵活性和经济性。本研究的主要目标是量化不同停机和常规启动情况下的成本降低。案例研究分析了 400 MW 发电总功率的联合循环,最低投诉负荷为 30%,而通过 40 MW 发电转气电厂,该负荷实际上可以降低到 20%。定义了八种场景,以比较热启动、温启动和冷启动下常规运行的参考案例与发电转气辅助运行。此外,还分析了不同负荷(30-50-70%)的发电转气辅助运行场景。这些场景还考虑了在调度低于最低投诉负荷的时期内发生的临时需求高峰。在这种情况下,传统电厂的响应时间非常有限,而发电转气辅助 CCPP 可以快速满足峰值。技术经济模型量化了所需的燃料、总功率和净功率、排放量以及每种情景下的总成本和收入以及每小时的净差额利润。根据所得结果的分析,不建议在热启动、温启动或冷启动时以最低负荷运行 PtG 辅助 CCPP。但是,对于每种类型的启动,采用建议的系统在超过 50% 的部分负荷下运行可实现重要的边际利润,从而避免停机并提高容量系数。
由于连续的阴雨天或阴天会导致太阳辐射间歇,这是简易小型太阳能干燥机的一个限制。这些条件常常使它们无法使用。通过加入储存系统(热积累)和/或辅助能源,即使在日照量低的时期也可以连续进行干燥过程或脱水。因此,本研究模拟并评估了一种混合系统的热行为和能量行为,该系统用于加热流向太阳能食品干燥机脱水室的空气。用于模拟的软件是 TRNSYS。模拟的混合系统由一个平板太阳能集热器和一组电阻器组成,可确保空气以恒定的温度进入脱水室。选定的目标温度为 70 o C,假设脱水室中没有食品。考虑到巴西南部城市的气候条件,采用四个电阻器(总功率为 1900 W,功率分别为 1000 W、500 W 和 200 W)的布置足以保证空气以恒定的温度进入。
Pernod Ricard Winemakers (PRW) Rowland Flat 工厂位于南澳大利亚巴罗萨谷,拥有酿酒、葡萄酒储存和包装能力。工厂通过四个大型商用氨制冷系统提供制冷,总功率为 5MWr。工厂的规模可以应对 1 月至 4 月的葡萄酒酿造期期间的大量制冷工艺负荷。在葡萄酒酿造期之外,制冷工艺负荷减少约 70%。为了降低高昂的电力成本,PRW 实施了一项雄心勃勃的能源管理战略。该能源资源整合战略包括安装大型可再生资产,旨在降低未来的能源费用。该公司在巴罗萨工厂安装了 2.8 MW 的太阳能光伏发电,以满足该工厂现有电力需求的约 20%,其余 80%(18 MW)计划通过电力购买协议 (PPA) 从风能和光伏发电中购买。
摘要:可再生能源整合已成为配电系统不可或缺的一部分。风能和太阳能渗透率高的能量存储设备正成为支持由于可再生能源电力间歇性而导致的功率不匹配的关键部件。可再生能源以及存储设备需要最佳放置,以确保配电系统高效运行。本文分析了电池储能以及分布式发电 (DG) 在混合配电系统中的影响。本文的主要贡献是:(i) 使用组合功率损耗灵敏度指数对 DG 进行最佳选址和定型,(ii) 基于组合功率调度策略对电池储能进行最佳位置和定型,(iii) 最小化系统的总功率损耗和燃料成本。计算了充电和放电期间的电压曲线、燃料成本、电池安装成本、电池存储大小和电池能量。针对 IEEE-33 总线测试系统获得了结果,并与文献中现有的方法进行了比较。使用通用代数建模系统 (GAMS) 和 MATLAB 接口解决了优化问题。关键词:径向配电系统、可再生能源、电池储能装置、损耗最小化、最佳尺寸和位置选择。,
在核潜艇反应堆燃料中使用高浓缩铀 (HEU) 与使用低浓缩铀 (LEU) 之间存在某些设计权衡,这些权衡包括堆芯寿命和大小、总功率和反应堆安全性等因素。为了评估这些权衡,对三种分别使用浓缩度为 7%、20% 和 97.3% 的铀燃料的 50MWt 反应堆设计进行了比较。7% 和 20% 的设计假定使用二氧化铀 (U02) 燃料,燃料为“焦糖配置”,而 97.3% 的设计假定为分散型。(这些设计使用阿贡国家实验室 IBM 3033 上的 EPRI-Cell 计算机代码建模。通过 TYMNET 公共网络系统从麻省理工学院的 DEC VT-100 终端访问该设施)。结论是,20% 浓缩堆芯的设计寿命(1200 天满功率运行)可与 97.3% 浓缩堆芯相同。7% 浓缩堆芯无法维持这段时间的临界状态。但是,堆芯寿命可以达到 600 天满功率运行。7% 和 20% 浓缩堆芯都比 97.3% 浓缩堆芯大。但是,使用整体设计而不是环型设计可以弥补较大的堆芯尺寸。
摘要 — 本文提出了一种基于电网内现行功率流条件的节点聚类新方法。为此,首先,将网络的有功功率流状态建模为有向无环图。该有向图明确表示功率流向何处,这有助于监控和分析系统漏洞。有向无环图表示还可以轻松识别仅提供或吸收有功功率的总线:这些总线分别是纯源节点和纯汇节点。对系统中的每个节点应用迭代路径查找程序,以枚举供电的源节点和其将功率转发到的下游汇节点。然后应用新颖的聚类算法将共享同一组可达源节点和汇节点的节点分组在一起。首先提出这种新颖的聚类方法作为一种工具,通过更好地总结大型电网中的总功率流配置来提高控制室操作员的态势感知能力。所提出的方法应用于两个样本电网,并阐述了与河流系统的类比,将支流、分流和中央主流等概念应用于电网。