为了了解电动总线的行为,开发了一个完整的系统模型,其中包括电池,电动机,动力电机,车辆动力学,安提洛克制动系统(ABS),再生制动器,范围,范围和控件等各种组件。使用所有关键子系统的状态空间动态表示形式开发了此模型,该模型允许工程师模拟和分析系统的行为不同输入驱动周期。团队还使用了关键输入,例如电机和电池的额定参数,电动机效率图,重量,驱动线/车轮参数等车辆规格等代表系统模型。EKA团队对从标准驱动周期和现实世界随机驱动周期数据获得的物理测试结果进行了彻底的验证。此验证增加了对模拟输出的置信度。
监测操作员和电荷行为分析对于确认一个人的收费基础结构至关重要。设备可能会发生故障或停止间歇性工作,并且远程数据应用程序可以共享,但是排除运营商的行为对于验证这是否可能是为基础停机时间收取收费的一个因素而言重要的。示例促进跑车充电的因素可能包括不良对准,跪下公共汽车,拒绝收费,充电器完全绕过服务延迟等。通过跟踪充电基础设施的正常运行时间,副副计划和操作可以对范围进行明智的决定,并在充电时实际上可能是什么范围,以及以什么一致性来帮助确定可以计划在一天中驾驶多少英里,也称为最大车辆任务或阻止行驶里程。
空气断路器多年前投入使用可能无法提供当今要求的可靠性和安全保证。确保人,装备和过程得到适当保护是一个越来越多的关注。由于缺乏材料或零部件过量时,维护不足以使工作套件是最好的解决方案。ABB低压服务提供了一种独特的方法,可以通过更改磨损或过时的零件,同时维护原始的工厂和设备配置,从而将安装的硬件和软件提高到下一代。该套件在ABB SACE DI Vision Lab中进行了测试,该实验室得到了Accredia的认可,并由重要的国际认证机构(例如Acae/Lovag,Ance,Ance,ASTA,ETL Semko,ul,ul,CSA,CSA和海军注册)所承认。
在过渡到零排放总线时,对于操作员来说,为特定路线特征选择正确的技术很重要,以确保公交车的核心目的 - 安全地移动乘客,按时完成 - 无需妥协即可完成。简介公交行业正在脱碳重型车辆,欧洲一直是实施零排放巴士的领导者。在过去的20年中,进行了零排放总线,电池电动总线(BEB)和燃料电池电动总线(FCEB)进行的试验。多亏了这些试验和示威,零排放巴士的引入正成为欧洲城镇运输网络越来越频繁且重要的部分。现在,零排放总线被证明是实现净零目标的关键贡献者,许多城市是
要在清洁运输计划下获得资金,必须与CEC年度清洁运输计划投资计划更新一致。The CEC issued GFO-20-601, Blueprints for Medium- and Heavy-Duty Zero-Emission Vehicle Infrastructure to identify actions and milestones needed for implementation of medium- and heavy-duty (MD/HD) zero-emission vehicles (ZEVs) and the related electric charging and/or hydrogen refueling infrastructure in order to accelerate the deployment of MD/HD Zevs和Zev基础设施具有整体和未来的运输计划观点。响应GFO-20-601,收件人提交了一项申请,该申请是在CEC在2021年4月8日提议奖励通知书中提出的,该协议于2021年10月8日以ARV-21-033执行。
摘要:九州工业大学的 BIRDS 卫星计划设计了一个经过飞行验证的 1U CubeSat 平台电气总线系统。该总线利用背板作为子系统和有效载荷之间的机械和电气接口。背板上的电气线路由软件使用复杂可编程逻辑器件 (CPLD) 配置。它允许在多个 CubeSat 项目中重复使用,同时降低成本和开发时间;因此,可以将资源用于开发任务有效载荷。最后,它为集成和系统级验证提供了更多时间,这对于可靠和成功的任务至关重要。目前 CubeSat 发射的趋势集中在 3U 和 6U 平台上,因为它们能够容纳多个复杂的有效载荷。因此,有必要演示电气总线系统以适应更大的平台。本研究展示了可配置电气接口板在两种情况下的可扩展性:能够容纳 (1) 多个任务和 (2) 复杂的有效载荷要求。在第一种情况下,设计了一个 3U 大小的可配置背板原型来处理 13 个任务有效载荷。使用四个 CPLD 来管理现有总线系统和任务有效载荷之间有限数量的数字接口。测量的传输延迟高达 20 纳秒,这对于 UART 和 SPI 等简单的串行通信来说是可以接受的。此外,测量的背板每轨道 ISS 的能耗仅为 28 mWh。最后,设计的背板被证明是高度可靠的,因为在整个功能测试中没有检测到任何位错误。在第二种情况下,与 1U CubeSat 平台相比,可配置背板在具有复杂有效载荷要求的 6U CubeSat 中实施。CubeSat 部署在 ISS 轨道上,初步在轨结果表明设计的背板支持任务没有问题。
⚫ 2 通道、双向转换器,用于混合模式 I 2 C 应用中 SDA 和 SCL ⚫ 兼容 I 2 C 和 SMBus ⚫ 电压电平转换范围为 0.8V 至 5.5V 和 2.2V 至 5.5V ⚫ 端口 A 工作电源电压范围为 0.8V 至 5.5V(正常电平) ⚫ 端口 B 工作电源电压范围为 2.2V 至 5.5V(静态偏移电平) ⚫ 5V 容限 I 2 C 总线和使能引脚 ⚫ 0Hz 至 1000kHz 时钟频率(由于中继器增加的延迟,最大系统工作频率可能低于 1000kHz) ⚫ 以 V CCB 为参考的高电平有效中继器使能输入 ⚫ 漏极开路输入/输出 ⚫ 无锁存操作 ⚫ 支持跨中继器的仲裁和时钟延长 ⚫可适应标准模式、快速模式和快速模式 Plus I 2 C 总线设备、SMBus(标准和高功率模式)、PMBus 和多个主设备 ⚫ 断电高阻抗 I 2 C 总线引脚
注意:A. C 包括“探针”和“夹具”电容。 B. 波形 1 用于具有内部条件的输出,即输出为低,除非被输出控制禁用。波形 2 用于具有内部条件的输出,即输出为高,除非被输出控制禁用。C. 所有输入脉冲均由具有以下特性的发生器提供:PRR 10 MHz,Z = 50 。D. 每次测量一个输出,每次测量一个转换。E. t 和 t 与 t 相同。F. t 和 t 与 t 相同。 G. t 和 t 与 t 相同。H. 所有参数和波形并不适用于所有设备。
摘要:电池状态对于安全可靠的新能量车辆非常重要。电池状态的估计已成为电动巴士和运输安全管理开发的研究热点。本文总结了电池状态估计任务,比较和分析三种类型的数据源的基本工作流程,并分析了电池状态估算的三种类型的数据源的优势和缺点,总结了用于估算电池电池状态的三种主要模型的特性和研究进度,例如机器学习模型,深度学习模型,以及杂交模型,以及杂种模型以及开发趋势方法。可以得出结论,有许多数据源用于电池状态估计,并且在自然驾驶条件下的机载传感器数据具有客观性和真实性的特征,使其成为准确电池状态估算的主要数据源;人工神经网络促进了深度学习方法的快速发展,并且深度学习模型越来越多地应用于电池状态估计中,证明了准确性和鲁棒性的优势;混合模型通过全面利用不同类型的模型的特性来更准确,可靠地估算电池状态,这是电池状态估计方法的重要开发趋势。更高的精度,实时性能和鲁棒性是电池状态估算方法的开发目标。
CA9306 器件是带有使能输入的双双向 I 2 C 和 SMBus 电压电平转换器,可在 1.2V 至 3.3VV REF1 和 1.8V 至 5.5VV REF2 的范围内工作。CA9306 器件允许在无需方向引脚的情况下在 1.2V 和 5V 之间进行双向电压转换。开关的低导通电阻 (RON) 允许以最小的传播延迟进行连接。当 EN 为高电平时,转换器开关处于导通状态,SCL1 和 SDA1 I/O 分别连接到 SCL2 和 SDA2 I/O,从而允许端口之间的双向数据流。当 EN 为低电平时,转换器开关处于关闭状态,端口之间存在高阻抗状态。CA9306 器件可用于将 400kHz 总线与 100kHz 总线隔离,方法是控制 EN 引脚在快速模式通信期间断开较慢的总线,并进行电压转换。可用封装:MSOP-8、DFN3x4-8、DFN2x3-8 封装。