一位安排罗马尼亚自行车旅行假期的客户联系了您;他们对地图上的一个专门的路线问题很感兴趣,他们想通过图表搜索来解决这个问题。通常,当人们寻找从一个地方(比如阿拉德)到另一个地方(比如布加勒斯特)的路线时,最小化的数量是总距离。如果路线从 A 到 S ,再到 F ,然后到达 B ,则总距离是沿途道路距离的总和(即,dist( A, S )+dist( S, F )+dist( F, B ) )。但您的客户正在考虑路线的艰巨性,因此他们将问题归结为最小化以下任一问题:
一位安排罗马尼亚自行车旅行假期的客户联系了您;他们对地图上的一个专门的路线问题很感兴趣,他们想通过图表搜索来解决这个问题。通常,当人们寻找从一个地方(比如阿拉德)到另一个地方(比如布加勒斯特)的路线时,最小化的数量是总距离。如果路线从 A 到 S ,再到 F ,然后到达 B ,则总距离是沿途道路距离的总和(即,dist( A, S )+dist( S, F )+dist( F, B ) )。但您的客户正在考虑路线的艰巨性,因此他们将问题归结为最小化以下任一问题:
* 速度:海平面最大速度 .......................123 节巡航,8000 英尺 80% 功率 .............122 节巡航:建议使用稀薄混合气,并预留发动机启动、滑行、起飞、爬升的燃油余量,并预留 45 分钟的储备。8000 英尺时功率为 80% 。...........航程 580 海里 53 加仑可用燃料时间 4.8 小时 航程在 10,000 英尺,60% 功率下。....航程 687 海里 53 加仑可用燃料时间 6.6 小时 海平面爬升率。...............720 FPM 服务上限 ..........................13,500 英尺起飞性能:地面滑行 ...........。。。。。。。。。。。。。。。。。。。。945 英尺 总距离超过 50 英尺 障碍物。。...........1685 英尺着陆性能:地面滑行 ...........。。。。。。。。。。。。。。。。。。。550 英尺总距离超过 50 英尺障碍物。。。。。。。。....1295 英尺失速速度:襟翼收起,动力关闭。...... div>.................51 KCAS 襟翼关闭,关机。......< div> 。。。。。。。。。。。。。。...47 KCAS 最大重量:坡道 ........。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 起飞。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 着陆。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . 标准空重。 。 。 。 。 。 。 。 < /div>。。。。。。。。.....。。。。。。。。。。。。。起飞。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。着陆。。。。。。。。。。。。。。。。。。。。。。。。。。。.....标准空重。。。。。。。。 < /div>.............最大有用负载 .....................行李限额 ............。。。。。。。。。。
速度:海平面最大巡航速度 109 节,7000 英尺 75% 功率,106 节巡航:建议使用稀薄混合气,并预留燃油余量用于发动机启动、滑行、起飞、爬升,并以 45% 功率保持 45 分钟储备。7000 英尺 75% 功率 22.5 加仑可用燃油 7000 英尺 75% 功率 35 加仑可用燃油 10,000 英尺最大航程 22.5 加仑可用燃油 10,000 英尺最大航程 35 加仑可用燃油 海平面爬升率 实用升限 起飞性能:地面滑行总距离 50 英尺障碍物 着陆性能:地面滑行总距离 50 英尺障碍物 失速速度 (CAS):襟翼收起,动力关闭 襟翼放下,动力关闭 最大重量 标准空重:通勤者通勤者 II 最大有用载荷:通勤者通勤者 II 行李限额 机翼负载:磅/平方英尺 功率负载:磅/马力 燃油容量:标准油箱总数 远程油箱。油容量 发动机:Teledyne Continental 100 BHF,2750 RPM 螺旋桨:固定螺距,直径
在目标上,每个团队都使用精密吸管作为导弹主体,恰好建造了6枚导弹。导弹是在活动期间构建的,仅使用Weso提供的材料。导弹是在固定目标的室内发射的,每个参与者都有一个有机会发射的机会。使用团队三个最佳发射的导弹(距离目标距离)的准确性用于确定球队得分,与被视为获胜者的总距离最短。
速度:海平面上升 125 节,8000 英尺处最小燃油功率 22 节 巡航定速:建议使用轻混合油,并预留发动机启动、滑行、起飞、爬升的燃油余量,在 45 伏交流电源下有 45 分钟的储备油量。8000 英尺处最小燃油功率 航程 485 海里(0.6 英里/小时) 续航时间 4.1 小时 8000 英尺处最小燃油功率 240 节。航程 630 海里 50 加仑可用飞行时间 5.3 小时 10,000 英尺时的最大航程 575 海里 50 加仑可用飞行时间 5.7 小时 10,000 英尺时的最大航程 ?50 海里 50 加仑可用飞行时间 ?.4 小时 海平面爬升率 ??0 FPM 服务 CEXLII,TG 14,200 英尺 起飞性能:地面滑跑 80 英尺 越过 50 英尺障碍物的总距离 1440 英尺 失速性能:地面滑跑 520 英尺 越过 50 英尺障碍物的总距离 1250 英尺 失速速度 (CAS):打开电源,关闭电源 50 节降落,关闭电源。44 节 最小航速 2300 磅 标准空重: Skyhawk。1379 磅 Skyhawk II。1403 磅 滑行满载重量: Skyhawk。921 磅 Skyhawk II。897 磅 载重量限额 120 磅 机舱装载量:磅/平方英尺 13.2 功率装载量:磅/马力 14.4 英尺容量:标准油箱总计 43 加仑。大型油箱 54 加仑。 orl- 容量 6 QTS E!{GII\-E: Avco Lycoming O-320-H2AD 160 BHP,2700 RPM 螺旋桨:固定螺距。直径 ?5 英寸。
摘要 — 空中交通通常以简单的指标来表征,例如在给定区域上空飞行的飞机数量或在时间窗口内飞行的总距离。例如,这些值可用于估计给定控制中心所需的空中交通管制员的粗略数量或进行经济研究。但是,这种方法不适用于更复杂的情况,例如在空域比较或空中交通管制员培训中遇到的情况。本文介绍了一种基于可靠理论框架的交通数据创新表示方法。它将为许多专用于交通分析的工具铺平道路。基于局部协方差的提取,获得了一个具有对称正定矩阵空间中值的网格。它可以作为比较的基础,也可以进行过滤和选择,以获得适合有效复杂性评估的交通状况摘要。
为了完成这项任务,消防员需要拉动一个重 56.82 公斤(125 磅)的加重雪橇,总距离为 30.48 米(100 英尺)。消防员必须使用手把手、一只手或双手的技术。这项任务从消防员将加重雪橇向自己拉动 15.24 米(50 英尺)的距离开始。然后,消防员走 15.24 米(50 英尺)到“起点”线,然后将加重雪橇向自己拉动 15.24 米(50 英尺)的距离回到原来的静止位置,总拉动距离为 30.48 米(100 英尺)。这项任务必须在光滑的混凝土板地板上完成。如果拖动加重雪橇的地板不是光滑的混凝土表面,则必须通过 DPE 测量力,并根据 IAW 研究规范调整拖动的重量。
1简介1 1。1问题配方2 1。2研究问题3 2相关工作5 2。1 ICD编码的先前方法5 2。 1。 1传统的机器学习方法5 2。 1。 2深度学习方法6 2。 1。 3个大语言模型(LLMS)6 2。 2利用ICD代码层次结构进行距离计算8 2。 3在模型训练中解决非差异损失功能9 2。 4不确定性10 3方法13 3。 这项工作中使用的1个LLM 13 3。 2数据集16 3。 3数据处理16 3。 3。 1临床笔记处理16 3。 3。 2 ICD- 10代码处理17 3。 3。 3数据拆分17 3。 4 T 5-基本编码的模型17 3。 5使用t 5中的任务前缀进行ICD编码18 3。 6将ICD-10代码层次结构纳入培训过程18 3。 6。 1定义基于距离的损耗函数18 3。 6。 2克服解码模型输出的挑战23 3。 7用于ICD编码的微调T 5 24 3。 8评估指标24 3。 8。 1总距离(TD)24 3。 8。 2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。1 ICD编码的先前方法5 2。1。1传统的机器学习方法5 2。1。2深度学习方法6 2。1。3个大语言模型(LLMS)6 2。2利用ICD代码层次结构进行距离计算8 2。3在模型训练中解决非差异损失功能9 2。4不确定性10 3方法13 3。这项工作中使用的1个LLM 13 3。2数据集16 3。3数据处理16 3。3。1临床笔记处理16 3。3。2 ICD- 10代码处理17 3。3。3数据拆分17 3。4 T 5-基本编码的模型17 3。 5使用t 5中的任务前缀进行ICD编码18 3。 6将ICD-10代码层次结构纳入培训过程18 3。 6。 1定义基于距离的损耗函数18 3。 6。 2克服解码模型输出的挑战23 3。 7用于ICD编码的微调T 5 24 3。 8评估指标24 3。 8。 1总距离(TD)24 3。 8。 2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。4 T 5-基本编码的模型17 3。5使用t 5中的任务前缀进行ICD编码18 3。6将ICD-10代码层次结构纳入培训过程18 3。6。1定义基于距离的损耗函数18 3。6。2克服解码模型输出的挑战23 3。7用于ICD编码的微调T 5 24 3。8评估指标24 3。8。1总距离(TD)24 3。8。2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。2 ICD第2章(IIC)25 3。8。3无关的ICD块(IIB)25 3。8。4无关的ICD第三级(IIT)25 3。9模型不确定性估计25 3。10实验设置27 4结果29 4。1数据分析结果29 4。2。2实验结果30 4。1 LLM和ICD编码的输入长度的比较31 4。2。2比较ICD编码的不同块策略32