This work presents an air-coupled piezoelectric micromachined ultrasonic transducer (pMUT) with high transmitting acoustic pressure by using sputtered potassium sodium niobate (K,Na)NbO 3 (KNN) thin film with a high piezoelectric coefficient (e 31 ~ 8-10 C/m 2 ) and low dielectric constant ( r ~ 260-300) for the first time.已经测试了以104.5 kHz为谐振频率的制造的KNN PMUT,已测试以表现出前所未有的结果:(1)在10 cm的距离为109 db/v的高声压水平(SPL)为10 cm,比基于ALN的PMUT的频率高8倍; (2)仅4伏峰峰幅度的低压操作(V P-P); (3)良好接收灵敏度。因此,这项工作介绍了一类新的高SPL和低驾驶电压PMUT,用于在包括但不限于触觉反馈,扬声器和AR/VR系统在内的各个领域的潜在应用中。关键字
2300Na 钠分析仪为微电子纯水/超纯水和动力循环化学监测提供高度可靠的在线钠测量。该分析仪可保证水的纯度,并提前警告可能发生的离子突破 - 最大限度地减少发电厂涡轮机腐蚀的影响以及半导体工艺的中断。
锂离子电池是当今电力平台的重要组成部分。锂离子电池在所有便携式电子设备、电动和混合动力汽车以及电网规模的储能系统中都有广泛的应用。[4] 但由于电池行业需要近 50% 的可用锂资源,因此锂离子电池能否大规模生产用于电网应用尚不确定。[5f] 此外,锂离子在非质子电解质中的电导率有限以及安全性较差也可能对其大规模利用造成问题。这些缺点促使研究人员寻找替代锂离子电池的新型储能技术,其中可充电金属空气电池成为一种有前途的新型电能存储技术(图 1)。通常,金属空气电池(Li 或 Na)比锂离子电池具有更高的理论比能,这使得金属空气电池系统对混合动力和混合动力电动汽车具有吸引力和实用性。 [6] 以金属为阳极、氧为阴极活性材料的电化学电力装置具有最高的能量密度,因为后者不存储在装置内部,而是可从环境中获取。锂空气电池(LAB)的理论比能量与汽油的理论比能量相当。[5c,7] 空气阴极性能限制了电池容量,危及 LAB 技术的商业成功。首先,无论是碱性还是酸性水性电解质,在阴极反应过程中都会消耗溶剂。其次,由于孔口/开口的堵塞导致放电不完全。[8] 因此,提高 LAB 性能的可能途径之一是阴极材料结构,[9] 它可以保持活性锂离子和氧气的传输,并且可以填充大量氧还原反应(ORR)的产物而不会堵塞孔隙。在燃料电池的气体扩散电极 (GDE) 领域中,双孔材料有望提高能量容量。[10] 第三,空气阴极性能下降。空气阴极提供大部分电池能量,因此电池电压降最大。[11] 放电过程中 LiO 2 的积累产生了混合产物,充电时的高电压导致溶剂分解,同时过氧化锂也发生还原。[12] 氧溶解度和扩散速率成为影响电池能量容量的关键因素。使用氧溶解度高和氧扩散率高的电解质可提高阴极容量。[8,13]
成本 $/kWh 石墨 12.50 10.23 Li-Si 合金 2.10 0.19 Na-Sn 合金 16.10 11.50 电解质 12.50 10.13 SSE-Sep *50.00 12.06 SSE-Sep 0.28 0.09 隔膜 160.00 24.00 SSE-Cat *50.00 14.71 SSE-Cat 1.73 0.49 铝 7.41 2.09 铝 7.41 0.98 铝 7.41 2.38 铜 13.45 12.55 铜 13.45 5.90 铜 不需要 阴极 20.00 30.03 阴极 17.00 25.01 阴极 1.51 4.89 制造占总成本的 35% 制造占总成本的 25% 制造占总成本的 50% 总计 $135/kWh 总计 <$80/kWh 总计 <$40/kWh(目标)