背景。在恒星对流区中,运动粘度与热扩散率之比,即普朗特数,远小于 1。目的。这项工作的主要目标是研究对流流动和能量传输的统计数据与普朗特数的关系。方法。采用笛卡尔几何中可压缩非旋转流体动力对流的三维数值模拟。对流区 (CZ) 位于两个稳定分层的层之间。在大多数情况下,熵波动扩散的主要贡献来自亚网格尺度扩散率,而平均辐射能量通量则由采用 Kramers 不透明度定律的扩散通量介导。在这里,我们分别研究上流和下流的统计和传输特性。结果。体积平均均方根速度随普朗特数的减小而增加。同时,下行流的填充因子会降低,导致在较低的普朗特数下,下行流平均会更强。这导致对流过冲对普朗特数有很强的依赖性。速度功率谱不会随着普朗特数的变化而发生明显变化,但对流层底部附近除外,因为那里垂直流占主导地位更为明显。在最高雷诺数下,速度功率谱与 Bolgiano-Obukhov k − 11 / 5 的兼容性比与 Kolmogorov-Obukhov k − 5 / 3 的兼容性更好
While the atmosphere consists of only a tiny fraction of the overall stellar radius and mass (respectively about 10 − 3 and 10 − 12 ), it represents a crucial boundary layer between the dense interior and the near vacuum outside, from which the light we see is released, imprint- ing it with detailed spectral signatures that, if properly interpreted in terms of the physics principles coupling gas and radiation, provides essential information on stellar 特性。尤其是,光谱线的身份,优势和形状(或轮廓)包含具有大气实际状态的重要线索,例如化学成分,电离状态,有效温度,表面重力,旋转速率。但是,必须根据详细的模型气氛正确解释这些这些,该模型气氛适当地说明了基本的物理过程,即:原子的激发和电离;辐射的相关吸收,散射和发射及其对光子能量或频率的依赖;最后,这如何导致发射通量与频率的这种复杂变化,从而使观察到的光谱构成了特征。这种模型大气的解释恒星光谱构成了推断质量,半径和光度等基本恒星特性的基础。
flw-16L-40-27K7 1584 75 21 FLW-1-16L-40-27K8 1484 71 21 FLW-1-16L-40-30K8-40-30K8 1591 76 21 21 FLW-16L-40-40-30K7 21 FLW-1-16L-40-40K7 1851 88 21 FLW-1-16L-40-50K8 1713 1713 82 21 FLW-1-16L-40-50K7 1851 88 21 FLW-1-16L-53-30K7 FLW-1-16L-7-30K7 3024 84 36 FLW-1-16L-7-40K7 3132 87 36 FLW-1-16L-7-7-50K7 3240 90 36 FLW-16L-1-30K7 4704 4704 84 54 56 FLW-16L-1-16L-1-40K7 4872 87 4872 87 56 FLW-16L-56 FLW-16L-56 FLW-16L-56 FLW-16L FLW-1-32L-35-30K7 2772 84 33 FLW-1-32L-35-40K7 2871 87 33 FLW-1-32L-35-50K7 2970 90 33 FLW-1-32L-53-32L-53-30K7 FLW-1-32L-53-50K7 4860 90 54 FLW-1-32L-7-32L-7-30K7 5964 84 71 FLW-1-32L-7-7-40K7 6177 6177 87 71 FLW-1-32L-7-7-7-7-50K7
QSI认识到多样性内的伟大。我们促进了一个包容性的环境,在各种背景中,聪明的思想共享想法和见解;因此,与研究人员,工程师和行业领导者紧密合作,我们弥合了理论知识和/或实际专业知识之间的差距,推动创新以及催化进步。
我会像宇航员一样慢慢走路! 我会用安静、内敛的声音说话。 我只触摸可以触摸的东西。 如果我迷路了或者不知道该怎么做,我会寻求帮助。 我会经常洗手,确保每个人的安全。 我会一直和我的团队或家人在一起。
上下文。迄今为止,绝大多数系外行星的发现都发生在太阳能街区的恒星周围,化学成分与太阳相当。然而,模型表明,具有不同动力学历史和化学丰度的不同银河环境中的行星系统可能会显示出不同的特征,这可以帮助我们改善我们对行星形成过程的理解。目标。这项研究旨在评估即将到来的柏拉图任务的潜力,以研究各种银河环境中恒星周围的系外行星种群,特别关注银河系薄磁盘,较厚的磁盘和恒星光环。我们旨在量化柏拉图在每个环境中检测行星的能力,并确定这些观察结果如何限制行星形成模型。方法。从全天空的柏拉图输入目录开始,我们将240万个FGK恒星分类为它们的分解银河系。对于长期观察LOPS2和LOPN1柏拉图田中恒星的子样本,我们使用新一代行星种群合成数据集估算了行星的发生率。将这些估计值与柏拉图检测效率模型相结合,我们预测了在标称2+2年任务中每个银河环境的预期行星产量。结果。基于我们的分析,柏拉图很可能检测到富含α的厚磁盘周围的至少400个系外行星。柏拉图田有3400多个潜在的目标恒星,其中有[Fe/H] <−0.6,这将有助于提高我们对金属贫困恒星周围行星的理解。结论。这些行星中的大多数被预计是半径的超近美和亚元素,其半径在2至10 r r介于2至50天之间,这是研究半径谷与恒星化学之间的联系的理想选择。对于金属贫乏的光环,柏拉图可能会检测1至80个行星,其周期在10到50天之间,这取决于潜在的金属性阈值,即行星形成。我们确定了高优先级,高信号到空的柏拉图P1样品中47个(运动学分类)恒星的特定目标列表,在金属贫困环境中寻找行星时提供了主要机会。柏拉图的独特功能和大量的视野位置是在银河系中各种银河环境中研究行星形成的宝贵工具。通过探测具有不同化学成分的恒星周围的系外行星种群,柏拉图将为恒星化学与行星形成之间的联系提供有益的见解。
高分辨率、大基线光学干涉仪的发展将彻底改变天文成像。然而,传统技术受到物理限制的阻碍,包括损失、噪声以及接收光通常具有量子性质的事实。我们展示了如何使用量子通信技术克服这些问题。我们提出了一个使用量子纠错码保护和成像远距离望远镜站点接收的星光的通用框架。在我们的方案中,光的量子态通过受激拉曼绝热通道相干地捕获到非辐射原子态中,然后将其印入量子纠错码中。该代码在提取图像参数所需的后续潜在噪声操作中保护信号。我们表明,即使是小的量子纠错码也能提供显着的抗噪声保护。对于大代码,我们发现噪声阈值低于该阈值可以保留信息。我们的方案代表了近期量子设备的应用,它可以将成像分辨率提高到超出使用传统技术可行的水平。
北斯坦莫尔重的稀土元素项目100%拥有的北斯坦莫尔·重物稀土元素(Hree)主导项目(北斯坦莫尔)位于西澳大利亚州,位于CUE以北约6公里处,可通过大北部高速公路进入密封道路。在本季度结束后,胜利宣布了北斯坦莫尔(North Stanmore)的最新矿产资源估算(MRE)24750万吨的矿产资源估算(MRE),当时520 ppm的总稀土氧化物加上氧化scandium Scandium氧化物(Treo + SC2O3),使用330ppm Treo treo confucfure(包括330 Ple Scandium of Scandium of Crove of Crove of graine of Scandium cuffsufe of grape)(TREO + SC2O3),包括高度少量的domains(吨 @ 1,012 ppm treo加上SC2O3。71%居住在指定的类别中,代表了澳大利亚富含Hree的矿床的最大指示矿产资源之一。