在临床前研究中,利用单个 gRNA 对血管内皮生长因子 A (Vegfa) 进行基于成簇的规律间隔短回文重复序列 (CRISPR) 的基因组破坏可抑制脉络膜新生血管 (CNV),为新生血管性年龄相关性黄斑变性 (AMD) 的长期抗血管生成治疗提供了前景。使用 CRISPR-CRISPR 相关核酸内切酶 (Cas9) 和多个向导 RNA (gRNA) 进行基因组编辑可以通过用基因截断增强插入-缺失 (indel) 突变来增强基因消融效果,但也可能增加脱靶效应的风险。在本研究中,我们比较了腺相关病毒 (AAV) 介导的 CRISPR-Cas9 系统使用单个和配对 gRNA 靶向 Vegfa 基因中在人类、恒河猴和小鼠中保守的两个不同位点的有效性。配对 gRNA 在体外增加了人类细胞中 Vegfa 基因消融率,但在体内并未增强小鼠眼中的 VEGF 抑制。与单个 gRNA 系统相比,使用配对 gRNA 的基因组编辑也显示出相似程度的 CNV 抑制。使用通过测序 (GUIDE-seq) 实现的全基因组无偏双链断裂 (DSB) 识别进行的无偏全基因组分析揭示了由第二个 gRNA 引起的微弱脱靶活性。这些发现表明,使用两个 gRNA 进行体内 CRISPR-Cas9 基因组编辑可能会增加基因消融,但也可能会增加脱靶突变的潜在风险,而针对 Vegfa 基因中的另一个位点作为新生血管性视网膜疾病治疗的功能益处尚不清楚。
摘要:背景:氧提取分数(OEF)表示大脑的氧气构成,可以使用定量易感映射(QSM)MRI技术来估计。最近的研究表明,中风后的OEF改变与处于危险组织的生存能力有关。在本研究中,使用QSM研究了急性中风期间猴子大脑中OEF的时间演变。方法:通过使用介意方法,在具有永久性脑动脉闭塞(PMCAO)的成年恒河猴(n = 8)中诱导缺血性中风。扩散 - ,T2-和T2*加权图像是在第2天,第2天和第4天使用临床3T扫描仪进行的。检查了磁敏感性和OEF的逐渐变化,以及它们与横向松弛率和扩散指数的相关性。结果:在超急性阶段,大脑受伤的灰色物质的磁敏感性和OEF显着增加,然后在第2天和第4天显着降低。此外,从第0天到第4天,灰质中OEF的时间变化与平均扩散率(MD)(MD)(r = 0.52; P = 0.046)相关。白质中的磁敏感性在急性中风期间逐渐增加(从负值到接近零),并且在第2天(p = 0.08)和第4天(p = 0.003)中看到了显着的增加,当白质显着退化时。但是,直到中风后第4天才发现白质中的OEF的显着减少。灰质中OEF的变化比中风侮辱后的白质中的变化更为突出。结论:初步结果表明,QSM衍生的OEF是一种强大的方法,可以检查缺血性脑中灰质从Hyperate阶段到中风的亚急性阶段的渐进性变化。发现QSM衍生的OEF可能会提供互补信息,以理解中风后脑组织的神经病理学并预测中风结果。
孕产妇感染已成为神经发育障碍(包括精神分裂症和自闭症谱系)的重要环境风险因素。母体免疫激活(MIA)的动物模型系统表明,母体免疫反应在后代的神经发育和行为结果中起着重要作用。细胞外的自由水是大脑中自由扩散水的量度,可能与神经蛋白浮动有关并受到MIA的影响。本研究评估了雄性恒河猴(Macaca mulatta)的脑扩散特征(Macaca Mulatta),其暴露于MIA的大坝(n = 14),并用病毒模拟聚细胞毒素的改良形式治疗,在三个三等中心的结束时。控制大坝在孕早期结束时接受了盐水注射(n = 10)或未经处理(n = 4)。后代在6、12、24、36和45个月进行了扩散MRI扫描。阳性大坝出生的后代表明,在6个月大时才开始,在扣带回皮层灰质中明显增加了细胞外的无细胞外水,并一直持续到45个月。此外,该地区的后代无灰物质无水与暴露于MIA的大坝中母体IL-6反应的大小显着相关。在暴露于MIA的后代中大脑体积与细胞外水之间的显着相关性也表明,MIA对脑发育的影响的融合,多模式的证据。在暴露于子宫内受到免疫激活的个体中,升高的自由水可能代表了扰动或脆弱的神经发育轨迹的早期标记。这些发现为非人类灵长类动物MIA模型的构建有效性提供了有力的证据,作为研究人类神经发育精神疾病的病理生理学的相关系统。
Yogesh Sontakke博士;人类胚胎学教科书,临床病例和3D插图; CBS Publishers&Distributors Pvt Ltd,新德里。Ghimire S,Mantziou V,Moris N,Martinez Arias A.人类胃结构:胚胎及其模型。Dev Biol。 (2021)474:100–8。 doi:10.1016/j。 ydbio.2021.01.006。 Luckett WP。 蛋黄囊的起源和分化,以及前象中胚层和恒河猴猴子胚胎中的中胚层。 am j anat。 (1978)152(1):59–97。 doi: 10.1002/aja.1001520106 Pechriggl E, Blumer M, Tubbs RS, Olewnik Ł, Konschake M, Fortélny R, Stofferin H, Honis HR, Quinones S, Maranillo E and Sanudo J (2022) Embryology of the Abdominal Wall and Associated Malformations— A Review. 正面。 外科。 9:891896。 doi:10.3389/fsurg.2022.891896。 Zahouani T,Mendez MD。 圆环。 statpearls。 宝藏岛(FL)(2021)。 Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。 基因群岛。 (2015)26(1):77–9。 PMID:26043511。 Chuaire Noack L.了解胃刺的新线索。 胚胎学,发病机理和流行病学。 colomb Med(Cali)。 (2021)52(3):E4004227。 doi:10.25100/cm.v52i3.4227。 Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加? 欧洲小儿手术杂志。 (2003)13(01):40–3。DOI:10.1055/S-2003-38299。Dev Biol。(2021)474:100–8。doi:10.1016/j。ydbio.2021.01.006。Luckett WP。蛋黄囊的起源和分化,以及前象中胚层和恒河猴猴子胚胎中的中胚层。am j anat。(1978)152(1):59–97。doi: 10.1002/aja.1001520106 Pechriggl E, Blumer M, Tubbs RS, Olewnik Ł, Konschake M, Fortélny R, Stofferin H, Honis HR, Quinones S, Maranillo E and Sanudo J (2022) Embryology of the Abdominal Wall and Associated Malformations— A Review.正面。外科。 9:891896。 doi:10.3389/fsurg.2022.891896。 Zahouani T,Mendez MD。 圆环。 statpearls。 宝藏岛(FL)(2021)。 Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。 基因群岛。 (2015)26(1):77–9。 PMID:26043511。 Chuaire Noack L.了解胃刺的新线索。 胚胎学,发病机理和流行病学。 colomb Med(Cali)。 (2021)52(3):E4004227。 doi:10.25100/cm.v52i3.4227。 Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加? 欧洲小儿手术杂志。 (2003)13(01):40–3。DOI:10.1055/S-2003-38299。外科。9:891896。 doi:10.3389/fsurg.2022.891896。Zahouani T,Mendez MD。圆环。statpearls。宝藏岛(FL)(2021)。Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。 基因群岛。 (2015)26(1):77–9。 PMID:26043511。 Chuaire Noack L.了解胃刺的新线索。 胚胎学,发病机理和流行病学。 colomb Med(Cali)。 (2021)52(3):E4004227。 doi:10.25100/cm.v52i3.4227。 Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加? 欧洲小儿手术杂志。 (2003)13(01):40–3。DOI:10.1055/S-2003-38299。Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。基因群岛。(2015)26(1):77–9。PMID:26043511。Chuaire Noack L.了解胃刺的新线索。胚胎学,发病机理和流行病学。colomb Med(Cali)。(2021)52(3):E4004227。doi:10.25100/cm.v52i3.4227。Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加?欧洲小儿手术杂志。(2003)13(01):40–3。DOI:10.1055/S-2003-38299。(2003)13(01):40–3。DOI:10.1055/S-2003-38299。
背景。在2020年,新型冠状病毒感染引起的大流行是过去一个世纪最关键的全球健康挑战之一。缺乏疫苗是控制新型感染的最有效方法,它促使科学界开发了大量预防产品。我们已经开发了一种针对由SARS-COV-2引起的新型冠状病毒感染的候选疫苗(Epivaccorona),该感染基于与载体蛋白结合的化学合成肽,并吸附在氢氧化铝上,并研究了开发疫苗的特定活性。的目的 - 研究肽疫苗epivaccorona的免疫原性和保护性。方法。使用标准分子生物学,病毒学和组织学方法进行了工作。结果。可以证明,当施用两次,间隔14天后,将仓鼠,雪貂和非人类灵长类动物(非洲绿色猴子,恒河猴)以260μg的剂量为260μg,这是一个与人类的接种剂量相当于人类的接种剂量。仓鼠的实验表明,这种真空与剂量依赖性免疫原性有关。该疫苗被证明可以加速雪貂中上呼吸道中的病毒从仓鼠和非人类灵长类动物中的肺炎中消除,并在与新型的Coro-Navirus发生呼吸道挑战之后的出现。结论。临床前活动研究的结果表明,epivaccorona的使用具有人类疫苗接种的潜力。关键字:冠状病毒,肽疫苗,引文临床前研究:Ryzhikov AB,Ryzhikov EA,Bogryantseva MP,Danalenko ED,Imatdinov IR,Nechaeva EA,Pyankov OV,Pyankova OG,Susloparov IM,Taranov OS,Gudymo AS,Danilchenko NV,Slectsova ES,Bodnev SA,Bodnev SA,Onkhonova GS,Petrov VN,Moiseeeva AA,Moiseeva aa,Moiseeva aa,,Moiseeva aa,,Moiseeva aa,,Moiseeva aa,,Moiseeva AA, Torzhkovapyu,Pyankov SA,Tregubchak TV,Antonets DV,Gavrilova EV,Maksyutov RA。肽疫苗对SARS-COV-2的免疫原性和保护性。俄罗斯医学科学院的年鉴。2021; 76(1):5-19。doi:https://doi.org/10.15690/vramn1528
1 Cron, RQ 和 Chatham, WW《风湿病学家在 Covid-19 中的作用》。《风湿病学杂志》。2020 年。47 (5) 639-642。2 Misra DP、Agarwal V、Gasparyan AY、Zimba O。风湿病学家对冠状病毒病 19 (COVID-19) 和潜在治疗靶点的看法 [2020 年 4 月 10 日提前在线发表]。《临床风湿病学》。2020;1 - 8。3 Hoffmann M、Kleine-Weber H、Schroeder S 等人。SARS-CoV-2 细胞进入依赖于 ACE2 和 TMPRSS2,并被临床验证的蛋白酶抑制剂阻断。《细胞》。2020;181(2):271 - 280.e8。 4 Mahevas, M. 等人 (2020)。没有证据表明羟氯喹对需要氧气的 COVID-19 感染住院患者有临床疗效:使用常规收集的数据模拟目标试验的研究结果。medRxiv。5 Huang C、Wang Y、Li X 等人。中国武汉 2019 年新型冠状病毒感染患者的临床特征。柳叶刀。2020;395(10223):497 ‐ 506。6 Williamson, B.、Feldmann, F.、Schwarz, B.、Meade-White, K.、Porter, D.、Schulz, J.、...... 和 Okumura, A. (2020)。瑞德西韦对感染 SARS-CoV-2 的恒河猴的临床益处。BioRxiv。 7 Chen, Z., Hu, J., Zhang, Z., Jiang, S., Han, S., Yan, D., ... & Zhang, Z. (2020). 羟氯喹对 COVID-19 患者的疗效:一项随机临床试验的结果。MedRxiv。8 Cantini F、Niccoli L、Matarrese D、Nicastri E、Stobbione P、Goletti D。巴瑞替尼治疗 COVID-19:安全性和临床影响的初步研究。J Infect。2020;S0163-4453(20)30228-0。9 Xu, X.、Han, M.、Li, T.、Sun, W.、Wang, D.、Fu, B., ... & Zhang, X. (2020). 托珠单抗对重症 COVID-19 患者的有效治疗。ChinaXiv,202003 (00026),V1。 10 Monti S, Balduzzi S, Delvino P, Bellis E, Quadrelli VS, Montecucco C. 接受免疫抑制靶向疗法治疗的一系列慢性关节炎患者的 COVID-19 临床病程。Ann Rheum Dis. 2020;79(5):667 ‐ 668。
NHP研究引发了广泛的公众愤怒和行动主义。 值得注意的实例包括比较心理学家哈里·哈洛(Harry Harlow)进行的臭名昭著的“绝望的坑”实验,该实验使公众震惊了公众,使年轻的恒河猕猴处于极端的心理困境之下。 3,4,5吉恩·萨克特(Gene Sackett)的哈洛(Harlow)的博士生说,动物权利倡导者的仇恨是如此强烈,以至于他个人认为这是哈洛(Harlow)和他的实验开始了现代动物权利运动。 3在1980年代,爱德华·陶布(Edward Taub)的银泉猴(Silver Spring Monkeys)引发了肢体脱落,不当住房状况和兽医护理不佳的指控。 3 taub一直在使用NHP删除实验来检验他对知识的不使用的假设及其在人类中风康复中的应用,这促进了约束诱导的运动疗法的发展。 3,6 NHP研究人员也一直是动物权利群体攻击的目标,例如2000年代中期对加利福尼亚州NHP研究人员的一系列攻击。 4最近,在2020年,威斯康星大学麦迪逊分校被美国农业部罚款74 000美元,以违反联邦动物研究标准,例如需要截肢的伤害。 7人类兴趣插图在图中的左侧是恒河猴,NHP研究中的2种首选物种中的1个和Harlow实验中使用的相同物种。 3右边的每个人都代表了NHP衍生的药物对一种特定难以治疗或研究的人类疾病的影响。 15参考NHP研究引发了广泛的公众愤怒和行动主义。值得注意的实例包括比较心理学家哈里·哈洛(Harry Harlow)进行的臭名昭著的“绝望的坑”实验,该实验使公众震惊了公众,使年轻的恒河猕猴处于极端的心理困境之下。3,4,5吉恩·萨克特(Gene Sackett)的哈洛(Harlow)的博士生说,动物权利倡导者的仇恨是如此强烈,以至于他个人认为这是哈洛(Harlow)和他的实验开始了现代动物权利运动。3在1980年代,爱德华·陶布(Edward Taub)的银泉猴(Silver Spring Monkeys)引发了肢体脱落,不当住房状况和兽医护理不佳的指控。3 taub一直在使用NHP删除实验来检验他对知识的不使用的假设及其在人类中风康复中的应用,这促进了约束诱导的运动疗法的发展。3,6 NHP研究人员也一直是动物权利群体攻击的目标,例如2000年代中期对加利福尼亚州NHP研究人员的一系列攻击。4最近,在2020年,威斯康星大学麦迪逊分校被美国农业部罚款74 000美元,以违反联邦动物研究标准,例如需要截肢的伤害。7人类兴趣插图在图中的左侧是恒河猴,NHP研究中的2种首选物种中的1个和Harlow实验中使用的相同物种。3右边的每个人都代表了NHP衍生的药物对一种特定难以治疗或研究的人类疾病的影响。15参考第一个主题,一个年长的人,象征着新疗法对神经退行性疾病的影响,例如帕金森氏(PD)和阿尔茨海默氏病(AD)对生活的长度和质量。在发现1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)后,PD的NHP模型变得至关重要。8在“将MPTP识别为永久性帕金森氏症的可能原因”之后,8早期研究使用MPTP与NHP模型一起出现了PD。NHP模型目前获得了突出性,因为传统的啮齿动物模型表现出对MPTP神经毒性作用的中度至重度抗性。9,10即使在今天,PD的NHP模型也有助于改善基于细胞的疗法11,并充当AD早期TAU病理学的关键模型。(啮齿动物几乎没有tau病理学,而早期 - tau磷酸化很难在人类验尸中研究。12)图纸中的第二个人类主题是年轻的酷儿人,代表了艾滋病毒/艾滋病药物的发展对同性恋社区和生存的影响。NHP研究对HIV/AIDS治疗的广泛贡献包括评估Tenofovir的毒性及其在抑制病毒复制方面的疗效,并早在1996年就测试其预防性使用。13插图中的最后一个人患有大疟疾皮疹,是全身性红斑狼疮(SLE)的最著名症状之一,代表了新疗法对SLE对生活质量的影响。14个NHP模型在进行SLE护理方面至关重要:使用cynomolgus猴子进行毒性测试和剂量测试。15在美国食品药品监督管理局在2011年批准了Belimimab之前,没有新的药物治疗专门针对SLE,并且在56年内释放了治疗方案,直到这一点的治疗选择通常不足。
合格的专家小组对已发表的文献进行了全面的综述和关于丁丙诺啡的未发表研究数据。此外,他们使用轶事信息和自己的个人经验,使用丁丙诺啡来完成对非人类灵长类动物的埃塞卡XR®目标动物安全和有效性的评估。所审查的文献包括在非人类灵长类动物以及其他哺乳动物物种中使用丁丙诺啡,包括短效和长效表述。合格的专家小组重点是在手术等程序之后,在非人类灵长类动物中使用丁丙诺啡进行疼痛管理。与丁丙诺啡的短作作用表述(持续4小时至8小时的单个注射),丁丙诺啡的持续或延长释放配方(较长的作用)是长期作用,最大程度地减少重复的克制和与目标动物中多次注射的压力以及对处理者的风险相关的压力。ethiqaXr®是丁丙诺啡的扩展释放公式。由于非人类灵长类动物物种的多样性,该小组推断了各种物种的信息,以支持其评估EthiqaXr®的有效性和目标动物安全性。因此,合格的专家小组建议,当给患者服用镇痛药时,对于研究人员和兽医来说,请仔细评估每个动物或实验组的疼痛。合格的专家小组确定,如果需要,可以在初始剂量后每72小时进行一次重复剂量的EthiqaXr®。合格的专家小组使用了可用的信息和个人经验来支持给药建议。他们说,非人类灵长类动物的剂量范围为0.01-0.72 mg/kg体重丁丙诺啡。合格的专家小组(Guarnieri,2021)审查的一篇文章报告说,哺乳动物物种通常需要0.5-2 ng/ml的丁丙诺啡血液浓度以提供可接受的镇痛。第二篇文章描述了与丁丙诺啡的持续释放(SR)配方相比,即时释放(IR)丁丙诺啡的药代动力学(PK)(Nunamaker等,2013)。成人恒河猴和cynomolgus猴子被施用0.01 mg/kg IR,0.03 mg/kg IR或0.2 mg/kg SR。猴子分别在4、8和96小时保持了高于0.5 ng/ml的丁丙诺啡的血浆浓度。合格的专家小组确定,这项研究表明,提供IR二马诺啡的镇痛需要重复
理解复杂的神经回路及其与特定行为的关系需要对神经元亚型进行精确的时间和空间调节。非遗传近红外光刺激是最有前途的大脑非侵入性神经接口技术之一。1-5 最近,脉冲红外神经刺激 (INS) 技术已被引入作为一种能够安全且可逆地调节神经活动的方法。1 与其他波长的红外刺激(例如 808 nm、2 980 nm、3 5.6 μ m 4、5 )引起的效应相反,脉冲传输 ∼ 1.875 μ m 红外波长会导致局部热量传输并被水快速吸收。6 当通过 200 μ m 光纤以短脉冲串(0.25 ms、200 Hz、0.5 s)传输时,这种高度聚焦(亚毫米)光学方法为灵长类动物皮层中的功能性柱特异性刺激提供了一种独特的方法。 7 因此,INS 相较于传统电刺激的优势包括高空间选择性、非接触式传递,以及对于灵长类动物和人类应用而言更为重要的一点,即无需事先表达视蛋白即可对大脑部位进行神经调节。8、9 此外,凭借这种靶向光纤刺激的精确度和 MRI 兼容性,局部 INS 结合 MRI 可用于灵长类动物大脑网络的体内映射 10-12,并有望用于对清醒行为猴子进行神经调节。虽然这些应用已显示出对体内回路神经调节的巨大前景,但其作用机制或对单个细胞类型的影响目前仍然知之甚少。现在有越来越多的证据表明 INS 会导致神经调节。通过电生理学、内在信号光学成像和体内钙成像评估,INS 已被证明可在麻醉啮齿动物中诱导兴奋性和抑制性神经元反应。 13、14 INS 对麻醉恒河猴视觉皮层产生了典型的视觉诱导皮层内在信号 7 的反应,而且导致功能匹配的眼部优势域的选择性调节,与局部皮层-皮层连接的激活一致。超高场 MRI 中的 INS 可激活恒河猴解剖学预测的中尺度全球大脑部位,这进一步表明投射细胞(兴奋性锥体神经元)被 INS 激活。10 – 12 这些 INS 诱导的反应已被证明具有强度和持续时间依赖性。尽管有这些令人信服的证据,但直接用电生理学方法展示神经元反应仍然具有挑战性。一个被称为贝克勒尔效应的问题在于,记录电极的直接加热会通过电极中的热诱导电流污染神经元反应。Cayce 等人。使用同时在麻醉啮齿动物体内使用 INS 进行钙成像,并观察大脑表面皮质星形胶质细胞和顶端树突中的细胞内钙信号。14 Kaszas 等人使用遗传编码的钙指示剂 Syn-GCaMP6f 进行双光子钙成像,并表明 INS 在麻醉小鼠皮质体内的神经元中诱导微弱的细胞内钙信号。15 到目前为止,我们对神经元反应的理解仍然处于初级阶段。其潜在的作用机制尚不清楚 16 – 23,并且在细胞水平上对不同神经元亚型以及体内不同生理状态的反应的影响仍然缺乏。特别是,尽管 fMRI 研究表明 INS 可在远处皮质部位诱导 BOLD 激活,但对于细胞回路对这种功能连接结果的贡献知之甚少。为了研究 INS 如何影响体内单个神经元并检查对不同细胞亚型的影响,我们在小鼠体感皮层 2/3 层以单细胞分辨率对 INS 的神经元钙反应进行了双光子成像。使用特定的遗传编码钙指示剂 GCaMP6 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的意义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。
1 美国国立卫生研究院国家环境健康科学研究所流行病学分部,北卡罗来纳州三角研究园 27709 美国 2 美国国立卫生研究院国家心肺血液研究所卫生与公众服务部弗雷明翰心脏研究部,马萨诸塞州弗雷明翰 01702 美国 3 爱丁堡大学遗传与癌症研究所基因组与实验医学中心,爱丁堡西部综合医院,英国爱丁堡克鲁路 4 密歇根大学公共卫生学院流行病学系,密歇根州安娜堡 48109 美国 5 埃默里大学罗林斯公共卫生学院环境健康系流行病学与恒河猴病学系,佐治亚州亚特兰大 30322 美国 6 波士顿大学公共卫生学院生物统计学系,马萨诸塞州波士顿 02215 美国 7 波士顿大学弗雷明翰心脏研究部,马萨诸塞州弗雷明翰 01702 8 临床脑科学中心,校长大楼,49 Little France Crescent,爱丁堡生物区,英国爱丁堡 9 埃克塞特大学心理学院,英国埃克塞特 10 埃默里大学神经病学和人类遗传学系,美国佐治亚州亚特兰大 30322 11 环境科学网络基础设施办公室,国家环境健康科学研究所,北卡罗来纳州三角研究园 27709,美国 12 埃默里大学精神病学和行为科学系,美国佐治亚州亚特兰大 30322,美国 13 马萨诸塞大学医学院眼科系,美国马萨诸塞州伍斯特 01655,美国 14 老道明大学数学与统计学系,美国弗吉尼亚州诺福克 23529,美国 15 弗雷明翰心脏研究,马萨诸塞州弗雷明翰 01702,美国 16 内部研究部人口科学分部研究,国家心肺血液研究所,美国国立卫生研究院,马里兰州贝塞斯达 20892,美国 17 拉什阿尔茨海默病中心,拉什大学医学中心,伊利诺伊州芝加哥 60612,美国 *通讯作者:london2@niehs.nih.gov