Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Frank Elliot Sahoa 5,Glauco Fontgalland 6,IEEE 高级会员,Hugerles S. Silva 7,8,IEEE 会员,Samuel Ngoho 9,Fayrouz Haddad 2,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学(NUIST),电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学,CNRS,土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系, 01026 Zilina, 斯洛伐克 4 电信系,电气工程和计算机科学学院,VSB 俄斯特拉发技术大学,70800 俄斯特拉发,捷克共和国 5 Laboratoire de Physique Nucléaire et Physique de l'Environnement (LPNPE), Université d'Antananarivo, Antananarivo 101, Madagascar 6 联邦大学Campina Grande,应用电磁和微波实验室,Campina Grande/PB,58429,巴西 7 Instituto de Telecomunicações and Departamento de Eletrónica,Telecomunicações e Informática,Universidade de Aveiro,Campus Universitário de Santiago,3810-193 Aveiro,葡萄牙 8 巴西利亚大学电气工程系(UnB),联邦区70910-900,巴西 9 法国系统科学协会 (AFSCET),巴黎 75013,法国
声子极化子能够实现红外光的波导和定位,具有极强的限制性和低损耗。通常使用互补技术(例如近场光学显微镜和远场反射光谱)来探测此类极化子的空间传播和光谱共振。这里,介绍了红外-可见和频光谱显微镜作为声子极化子光谱成像的工具。该技术同时提供亚波长空间分辨率和高分辨率光谱共振信息。这是通过使用可调红外激光共振激发极化子和对上转换光进行宽场显微镜检测来实现的。该技术用于对 SiC 微柱超表面中局部和传播表面声子极化子的杂交和强耦合进行成像。光谱显微镜允许通过角度相关共振成像同时测量动量空间中的极化子色散,并通过极化子干涉测量法在实空间中测量极化子色散。值得注意的是,可以直接成像强耦合如何影响极化子的空间定位,而这是传统光谱技术无法实现的。在强耦合阻止极化子传播到超表面的激发频率下观察到边缘态的形成。该技术适用于具有破坏反演对称性的广泛极化子材料,可用作快速、非微扰工具来成像极化子杂化和传播。
我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
摘要:光伏系统的发电量是可变的且不可调度的。储能系统可以为系统提供能源管理功能。特别是,对于结合了光伏系统和储能系统的混合系统,如果尺寸正确且操作正确,则可以向电网输送稳定电力。这项工作的目的是研究电池储能系统 (BESS) 的容量与光伏发电机的峰值功率之间的最合适关系,从而实现全年输送恒定功率。分析参数有助于确定最方便的能量注入常数值 (PV-CPG 设定点) 和存储系统的大小。作为案例研究,分析了位于西班牙萨拉戈萨的 1 MWp 光伏系统最合适的电池容量以及其运行最方便的年度设定点值。
1 硕士技术学者,2 助理教授 1&2 电子与通信工程系,1&2 Shri Ram 工程与管理学院,Banmore Gwalior,印度 摘要:最近,AC-DC 电力电子技术变得越来越高效和具有成本效益,但总有改进的空间。本研究论文涉及 APFC 恒流降压型开关电源中集成自偏置电源的设计和分析。它提出了一种有源功率因数校正 (APFC) 低侧恒流降压型 SMPS IC 中的集成自偏置 VCC 电源,该电源没有外部磁芯和铜线绕组。使用低侧恒流降压转换器的 7W LED 驱动器对设计的电路进行了评估和验证。实验结果表明,基于所提方案的 IC 具有出色的效率、EMI 性能并且功耗更低。所提出的电源电路的应用也可以扩展到其他转换器,例如降压、降压-升压、反激和 Zeta。索引术语 - APFC 低侧 CC 降压转换器、自偏置 VCC、电荷泵单元。
摘要 — 本文提出了一种基于宽带隙 RF 技术设计低噪声放大器的原创方法。这些 LNA 能够承受高电磁信号(如电子战中使用的信号),同时提供高探测率。该研究介绍了基于相同策略的单级 LNA 和两级 LNA 的原始设计程序。这些自重构 LNA 可以从高探测率模式(低 NF)切换到高线性模式(高输入压缩模式 IP 1dB )。该设计策略与稳健的 LNA 设计进行了比较,后者使用更大的晶体管尺寸来提高线性度,但代价是 NF 略有下降。在放大器输入端,RF 步进应力结果已达到 30 dBm,没有任何破坏,并提供稳定的 S 参数和噪声系数。
R.P.L. Nijssen 摘要 风力涡轮机转子叶片承受大量高度可变的载荷,但寿命预测通常基于恒幅疲劳行为。因此,确定如何根据恒幅疲劳行为估算变幅疲劳下的使用寿命非常重要。寿命预测包含不同的元素:计数方法、描述 S-N 曲线的公式、恒定寿命图和损伤规则。对于损伤描述,研究并比较了两种模型,即 Miner 和法和基于强度的寿命预测。在 Miner 和法中,计数法和恒幅疲劳行为描述的结果被转换为损伤参数“Miner 和”。不考虑载荷顺序的潜在影响,损伤参数的值仅表示是否发生故障:它与物理上可量化的损伤无关。在基于强度的方法中,通过计算每个载荷循环对强度的影响来预测寿命,直到载荷超过剩余强度。这种循环方法的预期优势是可以隐式地包含序列效应。此外,损伤参数始终与物理上可量化的参数(即强度)相关。成功应用基于强度的方法需要描述疲劳后强度,这需要大量的ex
选择一台配备单级压缩机和带感应电机的恒速送风机的 RTU 作为技术比较的基准。研究了三种改造策略。前两种策略涉及用两级或变速压缩机替换 RTU 的单级压缩机,并为恒速风扇添加变频驱动器 (VFD)。使用多级/变级压缩机可提高压缩机的部分负荷效率,最终可节省年度能源,并在 RTU 的设计容量大于其所服务的建筑空间的最大冷却负荷的情况下削减峰值需求。研究的第三项技术是使用高转子极开关磁阻电机 (SRM) 代替恒速送风机。SRM 应用于单速、两级和变速压缩机 RTU。SRM 电机通过磁阻扭矩运行。它们的定子极由直流 (DC) 电源驱动,使用交流电时需要逆变器和主动控制。这种固有特性使其在各种运行条件下都具有高效率。与 VFD 相比,它的效率也更高,因为它的开关频率要慢得多(南加州爱迪生 [SCE] 2018)。
星恒经过十年的持续研发,完成了锂铁电池的技术革新,通过先进的材料选择、电池结构创新,打造出一流的高能量LFP电池;
