包装说明书:用户须知 Asacol ® 800mg MR 片剂(美沙拉嗪) 开始服用此药前,请仔细阅读本说明书,因为其中包含对您很重要的信息。 - 保留本说明书。您可能需要再次阅读。 - 如果您有任何其他问题,请咨询您的医生或药剂师。 - 此药是为您开的。请勿将其传给他人。即使他们的症状与您的相同,也可能会对他们造成伤害。 - 如果任何副作用变得严重,或者您注意到本说明书中未列出的任何副作用,请告知您的医生或药剂师。本宣传单内容: 1. Asacol 800mg MR 片剂是什么以及其用途 2. 服用 Asacol 800mg MR 片剂前须知 3. 如何服用 Asacol 800mg MR 片剂 4. 可能的副作用 5. 如何储存 Asacol 800mg MR 片剂 6. 包装内容和其他信息 1. Asacol 800mg MR 片剂是什么以及其用途 Asacol 800mg MR 片剂含有活性物质美沙拉嗪(也称为 5-氨基水杨酸),它是一种用于治疗以下疾病的抗炎药物: • 溃疡性结肠炎 - 一种大肠(结肠)和后通道(直肠)疾病,肠道内壁发炎(红肿)。症状可能包括直肠出血、频繁腹泻和腹痛。 Asacol 800mg MR 片剂局部作用于结肠,以减轻炎症,还可预防溃疡性结肠炎进一步发作(发作)。• 克罗恩氏回肠结肠炎 – 一种影响小肠(回肠末端)和结肠的疾病,其中肠道内壁肿胀和疼痛。这可能会导致溃疡、脓肿和肠道狭窄(狭窄)。Asacol 800mg MR 片剂局部作用于回肠末端和结肠,以控制疾病并预防克罗恩氏回肠结肠炎进一步发作。2. 服用 Asacol 800mg MR 片剂前您需要知道什么如果您有以下情况,请勿服用 Asacol 800mg MR 片剂:• 对产品中的任何成分过敏(请参阅第 6 部分)。• 对阿司匹林或任何其他水杨酸盐药物过敏。 • 服用柳氮磺胺吡啶等其他药物时出现肾脏问题或血液问题。 • 已确认有严重的肾脏或肝脏问题。 • 有胃溃疡,无论是否出血。 除非医生指示,否则请勿将药片给儿童服用。
摘要:这篇全面的评论文章总结了从多苯并嗪获得的高级碳质材料的关键特性和应用。鉴定在碳化过程中产生的几种热降解产物,允许碳化的几种不同的机制(竞争性和独立机制),同时还确定了苯唑阵的热稳定性。多苯第二嗪衍生的碳材料的电化学性能,指出伪电容性和电荷稳定性特别高,这将使苯佐昔唑适用于电极。苯唑嗪的碳材料也具有高度的用途,可以通过多种方式合成和制备,包括泡沫,泡沫,纳米纤维,纳米球,纳米球和凝胶凝胶,其中一些提供了独特的特性。特殊特性的一个例子是,材料不仅可以作为气凝胶和凝聚凝胶作为多孔,而且可以作为具有高度量身定制孔隙率的纳米纤维,通过各种制备技术控制,包括但不限于使用表面活性剂和二氧化硅纳米粒子。除了高可调制的孔隙率外,苯佐昔嗪还具有多种特性,可使它们适用于碳化形式的众多应用,包括电极,电池,气体吸附剂,催化剂,屏蔽材料和浓烈的涂层等。极端的热和电稳定性还允许苯唑嗪在更恶劣的条件下(例如在航空航天应用中)使用。
1 美国华盛顿州西雅图华盛顿大学医学系、老年医学分部和普吉特海湾退伍军人管理局医疗保健系统老年医学研究教育和临床中心;2 美国纽约州罗彻斯特罗彻斯特大学医学中心医学系威尔莫特癌症研究所;3 美国马里兰州贝塞斯达 LUNGevity 基金会;4 加拿大艾伯塔大学医学系,艾伯塔省埃德蒙顿;5 美国马萨诸塞州剑桥辉瑞公司内科研究部;6 美国北卡罗来纳州达勒姆杜克大学医学院医学系;7 美国加利福尼亚州洛杉矶雪松西奈;8 美国德克萨斯州奥斯汀 Pattern Bioscience;9 美国加利福尼亚州曼哈顿海滩胰腺癌行动网络;10 美国宾夕法尼亚州费城宾夕法尼亚大学医院艾布拉姆森癌症中心;11 美国华盛顿州西雅图弗吉尼亚梅森医疗中心; 12 美国俄勒冈州波特兰市俄勒冈健康与科学大学 Knight 癌症研究所;13 美国弗吉尼亚州麦克莱恩市 WSCollaborative;14 美国印第安纳州印第安纳波利斯市印第安纳大学医学院外科系;15 美国印第安纳州印第安纳波利斯市印第安纳大学梅尔文和布伦西蒙综合癌症中心;16 美国印第安纳州印第安纳波利斯市印第安纳肌肉骨骼健康中心;17 美国印第安纳州印第安纳波利斯市 Richard L. Roudebush 退伍军人管理局医疗中心
长岛是美国在地下水和公共供水中的1,4-二恶烷污染水平最高的美国三大地区之一。由于其独特的地质位置和长岛的长岛,长岛也很容易受到气候变化的影响,这通过提高地下水水平并改变土壤和水生态系统,加剧了1,4-二恶烷的环境和健康影响。该OVPR试点申请旨在提供将气候变化与人类环境风险因素联系起来的第一个证据,从而提高公众对气候变化对人类健康的不利影响的认识。两个pis,博士。fei chen和Xinwei Mao,在环境致癌物和生物修复方面分别将重点放在1,4-二恶烷的微生物降解上。该试验应用的目的是检验1,4-二恶烷是人类致癌物的假设,气候变化改变了土壤中的微生物组活性,以代谢和清除1,4-二恶烷。初步数据表明,1,4-二氧烷可引起人类细胞中的恶性转化,并且假心电症可以代谢。为了扩展这些发现,我们将研究1,4-二恶英如何引起其在人类中的致癌性,以及气候变化是否影响假心电症的分布和活性,可能导致新的1,4-二恶烷代谢物或具有不同癌变的副产物。如果资助,将在本申请的支持期间,将作为多PI R01申请或气候变化和健康计划(CCHI,NOT-ES-22-006)的多PI R01申请或多PI合作项目提交全面建议。该项目的数据不仅将为气候变化对公共卫生的影响提供明确的证据,而且还将斯托尼·布鲁克大学(Stony Brook University)定位为将气候变化与环境健康科学联系起来的研究领导者。
酸性环境中的钢腐蚀是经济各个部门的严重问题。必须通过制定有效的腐蚀保护计划来控制它。在这篇综述中,总结了酸溶液中的铁衍生物作为铁抑制剂。首先描述酸性腐蚀和钢抑制钢作为控制腐蚀的手段的腐蚀。 然后引入了恶唑衍生物作为腐蚀抑制剂的可能性。 详细介绍了沙唑衍生物可以防止金属腐蚀的均值。 描述了经典方法和合成新的恶唑的最新趋势,尤其是获得恶唑衍生物的旅程。 侧重于奥沙唑的抑制作用,影响其效率的因素以及与其他抑制作用的比较分析的实验室研究。 也讨论了氧化唑作为石油和天然气,化学加工,汽车,海洋水处理行业的腐蚀抑制剂的工业应用。 对未来研究的关注和可能性以及如何利用奥卡唑来耐腐蚀,将扩大我们对科学界腐蚀的了解。 这项研究证明了恶唑作为腐蚀抑制剂及其重要性的潜力。 它为改善酸性环境中钢的腐蚀处理提供了新的想法。酸性腐蚀和钢抑制钢作为控制腐蚀的手段的腐蚀。然后引入了恶唑衍生物作为腐蚀抑制剂的可能性。详细介绍了沙唑衍生物可以防止金属腐蚀的均值。经典方法和合成新的恶唑的最新趋势,尤其是获得恶唑衍生物的旅程。侧重于奥沙唑的抑制作用,影响其效率的因素以及与其他抑制作用的比较分析的实验室研究。也讨论了氧化唑作为石油和天然气,化学加工,汽车,海洋水处理行业的腐蚀抑制剂的工业应用。对未来研究的关注和可能性以及如何利用奥卡唑来耐腐蚀,将扩大我们对科学界腐蚀的了解。这项研究证明了恶唑作为腐蚀抑制剂及其重要性的潜力。它为改善酸性环境中钢的腐蚀处理提供了新的想法。
由于发生错误和严重并发症的风险很高,ISMP 认为将注射用异丙嗪从处方集中完全移除是医院的最佳做法,并指出即使是深部肌肉注射,如果药物意外注射到动脉内,也会导致组织损伤。5 ISMP 建议使用更安全的替代品,如 5-HT3 拮抗剂昂丹司琼。替代药物曾经比异丙嗪昂贵得多,但随着目前仿制药的出现,它们的价格已大大降低。如今,一剂注射用昂丹司琼比一剂异丙嗪便宜,使其成为一种可行且具有成本效益的替代品。5 可用于治疗恶心和呕吐的其他药物包括甲氧氯普胺和丙氯拉嗪。异丙嗪也有更安全的剂型,包括口服片剂和溶液以及直肠栓剂,可替代肠外剂型。虽然这些替代给药途径的起效时间稍长,但它们并不具有
作为1,2,4-苯甲二嗪-1,1-二氧化物的衍生物,噻嗪类药物更准确地分类为苯甲二氮嗪。在不同化合物之间存在取代和杂环环的变化,但它们都共享一个未取代的磺酰胺基,类似于碳酸酐酶抑制剂。尽管它们保留了抑制碳酸酐酶的能力,但其利尿作用并不仅仅依赖于这种活性。在生理pH时,噻嗪类充当有机阴离子,由于其高蛋白结合和有限的肾小球过滤,因此必须通过肾脏有机阴离子转运蛋白通过肾脏有机阴离子转运蛋白进行主动分泌。尿酸与噻嗪类药物竞争为近端小管的分泌,可能导致高尿酸血症并引发易感个体的痛风。
植食性昆虫已经进化出复杂的解毒系统来克服许多植物产生的抗食草动物化学防御。然而,这些生物转化系统在通才和专才昆虫物种中有何不同,以及它们在确定昆虫宿主植物范围方面的作用仍是一个悬而未决的问题。在这里,我们表明 UDP - 葡萄糖基转移酶 (UGT) 在确定 Spodoptera 属内昆虫物种的宿主范围方面起着关键作用。对宿主植物宽度不同的 Spodoptera 物种进行比较基因组分析,发现在通才物种中 UGT 基因数量相对保守,但在专才 Spodoptera picta 中 UGT 基因假基因化水平较高。CRISPR - Cas9 敲除 Spodoptera frugiperda 的三个主要 UGT 基因簇表明,UGT33 基因在使该物种利用禾本科植物玉米、小麦和水稻方面发挥重要作用,而 UGT40 基因促进棉花的利用。进一步的体内和体外功能分析表明,UGT SfUGT33F32 是使广谱 S. frugiperda 能够解毒苯并恶嗪类化合物 DIMBOA(2,4-二羟基-7-甲氧基-2H-1,4-苯并恶嗪-3(4H)-酮)的关键机制,DIMBOA 是由禾本科植物产生的强效杀虫毒素。然而,虽然这种解毒能力在几种广谱 Spodoptera 物种中得到了保留,但专食文殊兰植物的 Spodoptera picta 因 SpUGT33F34 的非功能性突变而无法解毒 DIMBOA。总之,这些发现为了解昆虫 UGT 在宿主植物适应中的作用、广谱和专谱之间进化转变的机制基础提供了见解,并为控制一组臭名昭著的害虫提供了分子目标。
a. 巴黎萨克雷大学,ENS Paris-Saclay,CNRS,PPSM,91190 Gif-sur-Yvette,法国 b. CNR-NANOTEC – 纳米技术研究所,c/o Campus Ecoteckne,Via Monteroni,73100 Lecce,意大利 c. 考纳斯理工大学聚合物化学与技术系,Radvilenu plentas 19,LT50254 Kaunas,立陶宛 d. 杜伦大学物理系,杜伦 DH1 3LE,英国 * antonio.maggiore@ens-cachan.fr 摘要 光物理特性的控制对于电致发光器件和发光材料的持续发展至关重要。原始分子的制备和研究揭示了高效材料和器件的设计规则。在这里,我们基于热激活延迟荧光发射体中流行的供体-受体设计制备了 7 种新化合物。我们首次引入了苯并呋喃并[3,2-e]-1,2,4-三嗪和苯并噻吩并[3,2-e]-1,2,4-三嗪受体,它们与几种常见的供体相连:吩恶嗪、吩噻嗪、咔唑和 3,6-二叔丁基咔唑。在溶液和固态下进行了 DFT 计算和稳态和时间分辨光物理研究。虽然含有吖嗪部分的衍生物在任何形式下都是非发射性的,但包含 3,6-二叔丁基咔唑的化合物在所有情况下都显示 TADF。更有趣的是,用咔唑供体取代的两种衍生物在分散在聚合物基质中时具有 TADF 活性,在室温下以纯膜(微晶形式)的形式呈现磷光性。
从可再生资源中生成单体、预聚物和填料 生物基/可持续热塑性塑料、热固性塑料及其复合材料的合成、配方和结构-性能关系 材料类别:氨基塑料、苯并恶嗪、纤维素和纤维素材料、弹性体和橡胶、环氧树脂、纤维复合材料、互穿网络、木质素、纳米颗粒和纳米复合材料、植物油及衍生物、酚醛树脂、聚酯、多糖及衍生物、聚氨酯(常规和非异氰酸酯、泡沫)、有机硅、乙烯基酯树脂、玻璃聚物 工艺方法:增材制造、化学回收、复合材料和纳米复合材料加工、压缩成型、挤出、注塑成型、机械回收 表征技术:FTIR、NIR 和 NMR 光谱、防火测试、气体吸附和表面积分析、GPC、质谱、渗透性测试、孔隙率测定、流变学、热分析、 x射线衍射