摘要 :如今,全球最常受到恶意软件攻击的行业是制造业、石油和天然气以及教育。诸如 BlackEnergy2 和 Triton 之类的恶意软件能够对组织和关键基础设施系统(例如石油和天然气)造成严重的、危及生命的损害。安全研究人员和从业人员正在寻找有效的解决方案来减轻此类恶意软件攻击。因此,本文提出了一种恶意软件网络物理系统 (CPS) 分类来检测攻击。这种分类的灵感来自系统发育学,借鉴了生物学领域中生物体之间的进化关系。至于网络安全视角,它发现了恶意软件基因的进化祖先。这种恶意软件分类方法包括恶意软件行为、攻击方式和网络中的连接资产。它可以根据相关性检测多种形式的恶意软件攻击。这项研究对 CPS 开发商、供应商和承包商、监管和管理公用事业运营的政府机构以及负责保护 CPS 的国家网络安全中心 (NCSC) 都大有裨益。
地下水和饮用水办公室的水基础设施和网络弹性部门已审查并批准发布本文件。本文件不对任何一方施加具有法律约束力的要求。本文件中的信息仅用于推荐或建议,并不构成任何要求。美国政府及其任何雇员、承包商或其雇员均不对任何第三方使用本文件中讨论的任何信息、产品或流程作出任何明示或暗示的保证,或承担任何法律责任或义务,或表示该方对其的使用不会侵犯私有权利。提及商品名称或商业产品并不构成认可或使用建议。
克里姆林宫的恶意影响现在是推动欧洲和欧亚大陆 (E&E) 民主和经济进步的最紧迫挑战。莫斯科在整个 E&E 地区及其他地区传播恶意影响的能力是多方面的和复杂的。它包括使用军事力量、虚假宣传活动、破坏民主制度和进程的努力以及网络攻击。E&E 国家对克里姆林宫恶意影响的脆弱性因对俄罗斯贸易和投资的大量经济依赖、对俄罗斯能源的依赖、与克里姆林宫主导的媒体高度相关和暴露的信息环境以及该地区几个国家的民主倒退而加剧。此外,共产主义遗产在经济和政治生活的所有领域普遍存在的腐败为克里姆林宫的干涉创造了肥沃的土壤。
摘要 - 恶意软件是一种入侵,旨在损害计算机和任何网络连接的设备。由于数字时代的技术进步,恶意软件每天都以不同的形式发展。一些恶意软件包括病毒,特洛伊木马,勒索软件等。混淆的恶意软件是一种恶意软件,无法使用预定的签名模式或通过正常的检测策略来识别。混淆的恶意软件是对安全基础架构的主要威胁,很难检测到。为了自动化混淆的恶意软件检测过程,机器学习起着主要作用。本文旨在开发合适的机器学习模型作为一个合奏框架,以检测混淆的恶意软件。目标本文是在堆叠和提升下找到最有效,性能最高的合奏学习方法。堆叠的合奏学习分类器是通过机器学习模型(如随机森林,决策树,k-neart邻居和天真的贝叶斯)开发的。使用ADABOOST分类器,极端梯度提升分类器和直方图梯度增强算法开发增强集合学习分类器。从加拿大网络安全研究所进行的MalmeManalisy-2022数据集进行研究,其中包括58,598个记录,具有57个功能。使用准确性,精度,召回和F1得分等度量评估集合模型的性能。基于模型之间的比较分析,在堆叠方法中,随机森林和决策树以99.99%获得最高的精度。在增强方法中,通过直方图梯度提升和100%的极端梯度增强模型获得了最高精度。索引术语 - 合奏学习;恶意软件检测;机器学习;混淆的恶意软件;绩效评估
抽象恶意软件构成了对网络基础架构的主要威胁,该威胁容易受到几种破坏性恶意软件攻击的影响,例如病毒和勒索软件。传统的Antimalware软件可提供有限的效率,以防止恶意软件删除,因为不断发展的恶意软件能力(例如多态性)。Antimalware仅删除了其签名的恶意软件,并且对零日间攻击无效和无助,几项研究工作利用了监督和无监督的学习算法来检测和分类恶意软件,但假阳性占上风。这项研究利用机器学习来通过采用机器学习技术(包括特征选择技术以及网格搜索超参数优化)来检测和对恶意软件进行分类。主成分分析与Chi Square结合使用,以治愈维数的诅咒。支持向量机,K最近的邻居和决策树用两个数据集分别训练模型。使用混乱矩阵,精度,召回和F1评分评估了研究模型。使用CICMALMEM数据集分别使用K最近的邻居,决策树和支持向量机获得了99%,98.64%和100%的精度,该数据集分别具有相等数量的恶意软件和良性文件,K最近的邻居无法实现误报。未来的作品包括采用深度学习和集成学习作为分类器以及实施其他超参数优化技术。关键字:恶意软件检测,功能选择,超参数调整,网格搜索,机器学习。Accuracy of 97.7%,70% and 96% was achieved with K Nearest Neighbor, Decision Tree and Support Vector Machine respectively with Dataset_Malware.csv dataset, K Nearest Neighbor achieved False Positives of 38.The Model was trained separately with default hyperparameters of the chosen algorithms as well as the optimal hyperparameters obtained from Grid Search and it was discovered that optimizing超参数和与主组件分析获得的功能和Chi Square获得的功能使用具有相等数量的良性和恶意文件(CICMALMEM数据集)的数据集训练模型,从而通过支持向量机获得了最佳性能。简介的使用互联网的使用兴起,这是一个全球互连计算机网络的网络,带来了新的风险和漏洞。网络安全面临的主要问题之一是恶意攻击(Abiola&Marhusin,2018年)。恶意软件(也称为恶意软件)是侵入性软件,其设计具有伤害的特定目标,获得
摘要:无人机因其大小和工作量各不相同而广泛用于各种应用,例如监视、导航、在自主农业系统中喷洒农药、各种军事服务等。然而,携带有害物体的恶意无人机经常被用来侵入禁区并袭击关键公共场所。因此,及时发现恶意无人机可以防止潜在的危害。本文提出了一种基于视觉变换器 (ViT) 的框架来区分无人机和恶意无人机。在提出的基于 ViT 的模型中,无人机图像被分割成固定大小的块;然后,应用线性嵌入和位置嵌入,最终将得到的向量序列输入到标准 ViT 编码器。在分类过程中,使用与序列相关的额外可学习分类标记。将提出的框架与几个手工制作的深度卷积神经网络 (D-CNN) 进行了比较,结果表明,提出的模型的准确率达到了 98.3%,优于各种手工制作的和 D-CNN 模型。此外,通过将所提出的模型与现有的最先进的无人机检测方法进行比较,证明了所提出的模型的优越性。
我们在本文中解决了我们的经验培训和测试恶意URL检测系统。我们的研究受到一系列技术和安全开发的启发。首先,互联网已成为一个更危险的环境。Smanteme宣布2011年的网络威胁一年增长了36%。每天大约相当于4,500次新攻击。推出新攻击的速度远远超过了传统的反恶意软件工具的功能。第二,移动网络数据的个人和业务使用都大大提高。smanteme在其2012年的灵活性调查中观察到,虽然智能手机曾经在很大程度上被它禁止,但现在有成千上万的工人使用它们。结果,攻击者的攻击人群不仅扩大了,而且从商业或财务的角度包含了一个潜在吸引人的社区。
在当今数字链接的世界中,网络威胁变得比以往任何时候都变得越来越复杂。今天发现的一些危险恶意软件包括病毒,勒索软件和间谍软件。特征是,该恶意软件使个人和组织面临严重威胁。通过使用检测其存在的工具来分析恶意软件,了解其存在,了解其行为并致力于缓解它,从而减轻了这些威胁。本文在过去15年内强调了恶意软件分析工具的发展,特别关注静态,动态和混合方法的恶意软件分析方法。此外,它解决了恶意软件分析所涉及的方法,概述了检测的挑战,并证明了现实生活中的案例研究,显示了这种工具的效果。其他主题包括道德和法律方面,人工智能的作用以及未来在恶意软件分析中的趋势。
AI 和 ML:入门指南 过去几年,每位 IT 专业人士都听说过很多有关人工智能和机器学习的信息。如此之多,以至于它既让人们意识到需要采用先进的学习方法来解决安全问题,也让人们对应用这些技术及其好处的确切含义感到困惑。有很多安全供应商说“我们做 AI”,但这到底是什么意思呢?让我们首先定义每种技术,然后看看如何将其应用于检测恶意域的问题。人工智能 人工智能 (AI) 是计算机科学的一个分支,专注于帮助计算机自行学习、适应新输入并执行任务 - 所有这些都无需人工干预。AI 由多种不同类型的学习组成(如下所示),可用于 IT 安全、机器人技术、DeepFake 视频、实时对话翻译等各个领域。
