摘要:碳硼烷已成为硼中子俘获疗法 (BNCT) 中最有前途的硼剂之一。在此背景下,体内研究尤为重要,因为它们提供了有关这些分子生物分布的定性和定量信息,这对于确定 BNCT 的有效性、确定其定位和(生物)积累以及其药代动力学和药效学至关重要。首先,我们收集了用于体内研究的碳硼烷的详细列表,考虑了碳硼烷衍生物的合成或使用脂质体、胶束和纳米颗粒等递送系统。然后,确定了每项研究中采用的配方和癌症模型。最后,我们研究了与碳硼烷检测有关的分析方面,确定了文献中用于离体和体内分析的主要方法。本研究旨在确定碳硼烷在 BNCT 中使用现状和缺点,确定未来应用的瓶颈和最佳策略。
Sarawut Sirikasemsuk,1个Ponthep Vengsungnle,2 Smith Eiamsa-Ard 3和Paisarn Naphon 4,*摘要电池模块的热管理在其一生,性能,性能和安全风险中起着至关重要的作用。超载或外部热量会导致热失控。在高操作条件下,电池内部的电解质蒸发并产生较高的压力,导致电解质分解,泄漏,点燃和爆炸。使用湍流混合物,考虑了电池通过电池壳的流动的锯齿形流动的热行为。计算域包含十二个棱镜Lifepo 4电池电池,并具有四个冷却流夹克配置。从比较过程中达成了合理的协议。随着工作流体和较高浓度,TIO 2纳米流体和Fe 3 O 4的出口冷却剂温度高于水的高度,可提高去除热量能力。反向Zigzag引导流量降低了电池温度。电池模块的最高温度梯度分别为5.00 O C,4.60 O C,4.53 O C,3.41 O C和1.85 O C,分别为I,II(a),II(a),II(b),III和IV。因此,这种冷却系统可能是设计电池模块内部区域的冷却系统的替代方法,尤其是大型模块。
植物免疫是一个多层次的过程,包括识别病原体的模式或效应物以引发防御反应。这些包括诱导通常会限制病原体毒力的多种防御代谢物。在这里,我们在代谢物水平上研究了大麦根与真菌病原体根腐病菌 ( Bs ) 和禾谷镰刀菌 ( Fg ) 之间的相互作用。我们发现大麦烷是一组以前未描述过的具有抗菌特性的罗丹烷相关二萜类化合物,是这些相互作用中的关键参与者。Bs 和 Fg 感染大麦根会引发 600 kb 基因簇中的大麦烷合成。在酵母和本氏烟中异源重建生物合成途径产生了几种大麦烷,包括功能最丰富的产品之一 19-b-羟基大麦三烯酸 (19-OH-HTA)。该簇二萜合酶基因的大麦突变体无法产生大麦烷,但出乎意料的是,Bs 的定植率却降低了。相比之下,另一种大麦和小麦真菌病原体禾谷镰刀菌在完全缺乏大麦烷的突变体中的定植率要高 4 倍。因此,19-OH-HTA 可增强 Bs 的发芽和生长,而抑制其他致病真菌,包括 Fg。显微镜和转录组学数据分析表明,大麦烷可延缓 Bs 的坏死营养期。综上所述,这些结果表明,诸如 Bs 之类的适应性病原体可以破坏植物的代谢防御,以促进根部定植。
分子激子在自然和人工光收集、有机电子学和纳米级计算中起着核心作用。分子激子的结构和动力学对每种应用都至关重要,它们敏感地受分子堆积的控制。脱氧核糖核酸 (DNA) 模板化是一种强大的方法,它可以通过亚纳米级定位分子染料来实现受控聚集。然而,需要对染料堆积进行更精细的亚埃级控制,以针对特定应用定制激子特性。在这里,我们表明,将轮烷环添加到用 DNA 模板化的方酸菁染料中,可以促进难以捉摸的倾斜堆积排列,并具有非常理想的光学特性。具体而言,这些方酸菁:轮烷的二聚体表现出具有近乎等强度激子分裂吸收带的吸收光谱。理论分析表明,这些跃迁本质上主要是电子跃迁,并且仅在较窄的堆积角度范围内具有相似的强度。与方酸二聚体相比,方酸:轮烷二聚体还表现出更长的激发态寿命和更少的结构异质性。本文提出的方法可能普遍适用于优化激子材料,以用于从太阳能转换到量子信息科学的各种应用。
二曲烷的效率更高和完整的燃烧是通过唯一的改动来促进碳链结构的。这种预燃烧过程允许氧气更全面地获取和燃烧碳。其他添加剂无法做到这一点,因为它们是在后燃烧的基础上运行的。这就是使二坦烷独特的原因。
引言三阴性乳腺癌(TNBC)是由缺乏雌激素受体(ER),孕酮受体(PR)或人表皮生长因子受体2(HER2)所定义的异质乳腺癌组,并将其最小分类为4个基因组亚型(1)。TNBC患者在用新辅助蒽环类药物/含巨烷烷烷/含巨烷的治疗方案(2)治疗时,患者的病理完全反应(PCR)为30%至53%,最近,在用免疫检查点阻断(ICB)(ICB)治疗后,在一部分患者的PCR率中,PCR率得到了改善(3)。在用抗体毒物结合物(4)或ICB结合PD-L1 + TNBC中的化学疗法(5,6)中,也有最近改进的改进。但是,迫切需要确定可以增强对化疗和免疫疗法反应的治疗脆弱性和治疗方法。
烷烃和烯烃是高价值的平台化学品,可由微生物合成,利用来自农产品工业和市政的有机残留物,从而为资源回收提供另一种机会。目前烷烃和烯烃生物合成的研究和技术进步主要受到产品滴度低的阻碍,阻碍了生物工艺的升级和大规模应用。因此,当前的科学研究旨在通过利用各种微生物底盘中的天然和工程代谢途径来抑制竞争代谢途径,并结合生物工艺优化来提高生产力。此外,为了降低成本,正在研究利用二氧化碳等无机碳源来促进烷烃和烯烃的绿色合成。因此,本综述批判性地讨论了烷烃和烯烃生物合成的机遇和挑战,旨在研究当前的技术进步。在这篇综述中,彻底讨论了烷烃和烯烃生物合成的五种主要代谢途径的局限性,并强调了它们的缺点。此外,还研究了各种技术,包括代谢工程、自养代谢途径和新的非生物合成途径,作为提高产品滴度的潜在方法。此外,本综述对烷烃和烯烃生物合成的经济和环境方面提供了宝贵的见解,同时也为未来的研究方向提供了展望。
在近年来,由于其exceptiational生物学活性,对双氯芬酸衍生物的合成的兴趣增加了。我们在这里通过简单的合成程序提出了一些新型双氯芬酸衍生物的合成,其中碳水化合物化合物1用氯乙烷在二恶烷中产生了化合物2。氯乙酰氢氮杂化合物2进一步对使用不同的亲核试剂进行亲核取代反应,例如:氢氮水合物,硫代硫代 - 巴齐德和P-氨基苯甲苯甲酰胺分别给予相应的衍生物3-5。更重要的是,羟基林化合物3与活性氢种的反应,例如:乙酰乙酸乙酸乙酯和乙酰丙酮在重新流动的乙醇中提供了相应的吡唑酮衍生物6和7。此外,先前报道的双氯芬酸酯8与1,2-二氨基乙烷的反应给出了氨基衍生物9。最后,后一种化合物与苯甲醛中的缩合反应提供了相应的Schiff的碱化合物10,而在二Xan中含有氯乙酰氯的酰化产生了11。不同的光谱(IR,NMR和质量)和元素分析技术用于探索合成化合物的结构。对所有合成化合物的体外抗菌活性进行了测试,以针对不同的细菌菌株表现出满意的结果,并进行了分子对接研究以研究作用方式。©2022 Elsevier B.V.保留所有权利。
参考:1 F和Al。临床。2013; 26:29-42 EC等。 j proteom res。 2012; 11:1696-1714。 3 Genen RG,编辑。 牛奶复合材料手册。 圣地亚哥:学术出版社; 1995。 919 p。 4 Hassiotou F和Al。 细胞干。 2012; 30:2164-2174。 5 JA等。 儿科。 2001; 107:e88。 6 mouchels s和al。 临床perinatol。 2017; 44:193-207。 7 7找到C和Al。 br j nutr。 1999:391-399。 8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-32 EC等。j proteom res。2012; 11:1696-1714。 3 Genen RG,编辑。 牛奶复合材料手册。 圣地亚哥:学术出版社; 1995。 919 p。 4 Hassiotou F和Al。 细胞干。 2012; 30:2164-2174。 5 JA等。 儿科。 2001; 107:e88。 6 mouchels s和al。 临床perinatol。 2017; 44:193-207。 7 7找到C和Al。 br j nutr。 1999:391-399。 8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-32012; 11:1696-1714。3 Genen RG,编辑。 牛奶复合材料手册。 圣地亚哥:学术出版社; 1995。 919 p。 4 Hassiotou F和Al。 细胞干。 2012; 30:2164-2174。 5 JA等。 儿科。 2001; 107:e88。 6 mouchels s和al。 临床perinatol。 2017; 44:193-207。 7 7找到C和Al。 br j nutr。 1999:391-399。 8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-33 Genen RG,编辑。牛奶复合材料手册。圣地亚哥:学术出版社; 1995。919 p。 4 Hassiotou F和Al。细胞干。2012; 30:2164-2174。5 JA等。 儿科。 2001; 107:e88。 6 mouchels s和al。 临床perinatol。 2017; 44:193-207。 7 7找到C和Al。 br j nutr。 1999:391-399。 8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-35 JA等。儿科。2001; 107:e88。6 mouchels s和al。 临床perinatol。 2017; 44:193-207。 7 7找到C和Al。 br j nutr。 1999:391-399。 8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-36 mouchels s和al。临床perinatol。2017; 44:193-207。 7 7找到C和Al。 br j nutr。 1999:391-399。 8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-32017; 44:193-207。7 7找到C和Al。br j nutr。1999:391-399。 8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-31999:391-399。8 Beck Kl和Al。 j proteom res。 2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-38 Beck Kl和Al。j proteom res。2015; 14:2143-2157。 9作为脱烷。 神经。 1978; 4:345-32015; 14:2143-2157。9作为脱烷。神经。1978; 4:345-3
摘要:微管稳定剂(MSA)是用于治疗三阴性乳腺癌(TNBC)的一类化合物,这是乳腺癌的亚型,在该乳腺癌中,化学疗法仍然是患者的标准护理。如紫杉醇和多西他赛等紫杉烷在诊所表现出了针对TNBC的效率,但是由于患者的紫杉烷耐药性的增加,需要确定新的MSA类别。( - ) - Zampanolide是一种共价微管稳定剂,可以在体外绕过紫杉烷耐药性,但尚未在体内抗肿瘤效率中评估。在这里,我们确定( - ) - Zampanolide具有与TNBC细胞系中紫杉醇相似的效力和效率,但由于其共价结合,它的持久性更高。我们还提供了( - ) - Zampanolide的第一个报道的体内抗肿瘤评估,我们确定在肿瘤内交付时,它具有有效和持久的抗肿瘤效果。未来在Zampanolide上的工作,以进一步评估其药效团,并确定改善其系统性治疗窗口的方法,将使该化合物成为临床发育的潜在候选者,其能够避免紫杉烷耐药机制。