三阴性乳腺癌 (TNBC) 是最致命的乳腺癌亚型,可用的治疗方案很少。TNBC 的标准治疗包括使用紫杉烷类药物,这种药物最初是有效的,但剂量限制性毒性很常见,患者经常复发并产生耐药性肿瘤。产生紫杉烷类效果的特定药物可能能够改善患者的生活质量和预后。在这项研究中,我们确定了三种新型 Kinesin-13 MCAK 抑制剂。MCAK 抑制会诱导非整倍体;类似于用紫杉烷处理的细胞。我们证明 MCAK 在 TNBC 中上调并且与较差的预后有关。这些 MCAK 抑制剂降低了 TNBC 细胞的克隆形成存活率,三种抑制剂中最有效的 C4 使 TNBC 细胞对紫杉烷敏感,类似于 MCAK 敲低的效果。这项工作将扩大精准医疗领域,包括可能改善患者预后的非整倍体诱导药物。
摘要:尽管具有毒性,DNA 烷化药物仍然是抗癌治疗的基石。传统观点认为,快速分裂的肿瘤细胞会使其更多的 DNA 处于暴露的单链状态,从而使这些快速分裂的细胞更容易受到烷化药物的影响。随着我们对 DNA 修复途径的理解日趋成熟,越来越清楚的是,受损的 DNA 修复(癌症的一个标志)在确定这些有毒药物的治疗窗口方面也发挥着作用。因此,尽管新的烷化基序不太可能在临床上取得进展,但这些药物的遗产是我们现在了解了针对 DNA 损伤修复途径的治疗潜力。在这里,我们回顾了烷化剂作为抗癌药物的历史,同时总结了共价 DNA 修饰的不同机制方法。我们还提供了几个案例研究,说明如何深入了解受损的 DNA 修复途径,为针对 DNA 损伤反应的有效且毒性较小的靶向药物铺平道路。
• 蒽环类抗生素 例如表柔比星、丝裂霉素 • 铂化合物 例如顺铂、卡铂 • 紫杉烷 例如紫杉醇、多西他赛 • 长春花生物碱 例如长春新碱、长春花碱 • 抗代谢物 例如卡培他滨、5FU、阿糖胞苷 • 烷化剂 例如苯丁酸氮芥、环磷酰胺 • 拓扑异构酶 1 例如伊立替康 • 拓扑异构酶 2 例如依托泊苷 • 其他 例如天冬酰胺酶,砷
使用Penthrox®定期接触患者的医疗保健专业人员应了解使用吸入剂的任何相关职业健康和安全指南。为了减少对甲氧氟烷的职业接触,应与活性碳(AC)室一起使用Penthrox®吸入器。应指示患者向Penthrox®吸入器呼气,以便呼出的蒸气通过AC腔室,该腔室吸附了甲氧基氟烷。多次使用penthrox®吸入器没有交流室会产生额外的风险。在分娩和分娩时,在产科患者中使用了甲氧基氟烷的甲氧基氟兰酸酯,在分娩病房中,肝尿素氮,血尿素氮和血清尿酸的升高。
摘要:癌症恶病质对结肠微生物群的影响的特征很差。这项研究评估了如果发现类似的营养不良,则评估了两种缓存产生的肿瘤类型对肠道菌群的影响,以确定肠道菌群的影响。此外,还确定了含有富含免疫营养素的食物(核桃)的饮食是否已知可以促进结肠中益生菌的生长,这会改变营养不良和缓慢的卡希克西亚。男性Fisher 344只大鼠被随机分配给有或没有核桃的半纯化饮食。然后,在每个饮食组中,将大鼠随机分配到一个治疗组:肿瘤的特征喂养(TB),非肿瘤含量的Adibitum Fed(NTB-AL)和非肿瘤组对TB(NTB-PF)(NTB-PF)。TB组植入了病房结肠癌或MCA诱导的肉瘤,都是可移植的肿瘤系。粪便样品,并使用16S rRNA基因分析鉴定了细菌。两个结核病组都患有恶病质,但肠道微生物组的变化也有所不同。β多样性不受治疗(NTB-AL,TB和NTB-PF)的影响,无论肿瘤类型如何,但受饮食影响。此外,饮食始终改变了几种细菌类群的相对丰度,而治疗和肿瘤类型没有。对照饮食增加了曲霉曲霉的丰度,而核桃饮食则增加了Ruminococcus属。没有发现病虫的常见粪便细菌变化特征。饮食始终改变了肠道菌群,但是这些变化不足以减慢恶病质的进展,这表明癌症恶病质比几个肠道菌群变化更为复杂。
电视、智能手机和平板电脑等新兴设备正成为人们日常生活的一部分。2012 年,国际电信联盟无线电通信部门 (ITU-R) 为超高清显示器推荐了一种新的色域标准,称为 BT.2020(或 Rec.2020)。[1] 采用 Rec.2020 色域可以精细地再现自然界中的几乎所有颜色,这些颜色基于红、绿、蓝 (RGB) 三原色,国际照明委员会 (CIE) 色度坐标分别为 (0.708, 0.292)、(0.170, 0.797) 和 (0.131, 0.046)。在这种需求的驱动下,开发能够显示具有极窄发射光谱带宽和高效率的单色 RGB 颜色的新型发光材料和装置是一项至关重要的挑战。有机发光二极管 (OLED) 因其广泛的研究和开发目前被视为 UHD 显示器的主流技术。[2–8] 在过去的二十年里,随着新发光机制的出现,OLED 的效率得到了显著提高,特别是磷光 [5,8,9](第二代)和热激活延迟荧光 [7,10,11](TADF,第三代),这些机制使电子到光子转换的内部量子效率达到 ≈ 100%。尽管电致发光 (EL) 效率如此之高,但大多数传统 OLED 都存在宽带发射光谱的问题,半峰全宽 (FWHM) 通常为 > 50 nm 或更宽,从而导致 EL 的色纯度低。因此,在商用 OLED 显示器中,需要使用额外的彩色滤光片来选择性地透射原色,这不可避免地会导致光提取率下降,并导致器件的外部 EL 量子效率 (EQE) 降低。从器件的功耗角度来看,这种情况也是不利的。最近,以稠合多环 π 体系为特征的多共振诱导 TADF (MR-TADF) [12–24] 材料已成为克服传统 OLED 缺点的有机发射体的新范例,引发了研究兴趣的激增。事实上,与最先进的无机 LED 和量子点 LED 的情况一样,采用有机硼 MR-TADF 发射体的 OLED 已经实现了高效的窄带 EL
摘要背景:卵巢癌极大地危害并恶化了全世界的女性健康状况。预测性生物标志物的细化可以实现患者分层并有助于优化疾病管理。方法:采用生物信息学分析方法分析了卵巢癌中的RAD51表达谱、靶标-疾病关联和RAD51适应度评分。为了进一步确定其作用,进行了基因富集分析并构建了调控网络。进行生存分析和药物敏感性试验以评估RAD51表达对卵巢癌预后的影响。然后在验证队列中通过免疫组织化学方法确认RAD51的预测价值。结果:卵巢癌比正常卵巢表达更多的RAD51。RAD51赋予卵巢癌依赖性并与卵巢癌有关。RAD51与包括卵巢癌在内的各种疾病具有广泛的靶标-疾病关联。与 RAD51 相关和相互作用的基因参与 DNA 损伤修复和药物反应。高 RAD51 表达表明卵巢癌的生存结果不良并且对铂、紫杉烷和 PARP 抑制剂具有耐药性。在验证队列(126 名患者)中,高 RAD51 表达表示铂耐药,铂耐药患者表达更多的 RAD51。高 RAD51 表达的患者 OS 较短(HR = 2.968,P < 0.0001)且 PFS 较差(HR = 2.838,P < 0.0001)。RAD51 表达水平与患者的生存长度呈负相关。结论:卵巢癌有明显的 RAD51 表达,RAD51 赋予卵巢癌依赖性。高 RAD51 表达表示生存率差和药物敏感性降低。RAD51 在卵巢癌中具有预测价值,可以作为预测生物标志物。关键词:药物反应性、卵巢癌、预测因子、RAD51、生存
摘要。咪唑复合物具有高生物学活性的一些金属配合物,由新咪唑配体从1,3-恶唑衍生物与羟胺的反应中制备,并利用这种配体在某些金属离子配合物中制备。将使用许多用于所有准备好的化合物的技术,例如元素分析(CHN),(FT-IR),(UV-VIS)光谱和1 H-NMR光谱,用于诊断这些复合物,并将从获得的结果中得出复合物的形式。结果表明,除铜和钯配合物外,所有产生的络合物的八面体几何形状是方形刨剂形状。评估了配体及其金属离子复合物对各种微生物的抗菌活性。关键词:咪唑,恶唑,光谱数据,生物活性
摘要:在这项研究中,我们开发了一种热存储介质,其中包括充满有机相位变化材料(PCM)的多孔活性炭,该碳利用相变的潜热在冷却过程中吸收热量和释放热量。对于活化的碳,我们同时使用了基于木炭的粉状活性炭(250-350均)和颗粒状活性炭。实验中使用的有机相变材料是十二烷,三烷,四烷和五烷。材料特性,例如导热率,潜热和熔融温度范围,结果观察到结果是一致的。还评估了所提出的培养基的周期性热性能。值得注意的是,用有机PCM的混合物填充活化的碳导致最高的温度调节作用。这项研究中提出的程序和结果有望进一步改善含有稳定温度的PCM的热储存介质的性能,包括建立加热和冷却。