摘要 锌指核酸酶等基因组编辑工具为植物的遗传操作提供了新策略。与农杆菌介导或直接基因转移不同,农杆菌介导或直接基因转移将基因随机引入基因组,从而可能导致基因表达的高度变异,而靶向基因添加可将 DNA 序列可预测地整合到植物基因组的特定位置。我们研究了各种独立的细胞系是否都含有通过锌指核酸酶介导的同源重组 (HR) 放置在相同基因组位点的转基因,与通过农杆菌介导的随机位点转化产生的整合事件相比,它们会产生更可重复和更均匀的表达水平。通过流式细胞术测量转基因产生的蛋白质量,分析了 Nicotiana tabacum L cv. Bright Yellow 2 (BY-2) 悬浮细胞中靶向 HR 事件和随机整合事件的基因表达差异,从而首次提供了关于快速增殖的植物悬浮细胞系中标记基因表达的位置效应的报告。靶向 HR 和单拷贝随机事件的标记蛋白水平覆盖了相似的范围;但是,给定细胞系中靶向事件的蛋白质表达均匀性明显高于随机插入转基因的细胞系;HR 细胞系原生质体的整体生存力也是如此。总之,使用靶向插入到已充分表征的细胞系的合格基因座中比随机插入到基因组中可获得更可靠的结果。
摘要:继 2020 年首次演示冷却至量子基态的悬浮纳米球(U. Delić 等人,Science,第 367 卷,第 892 页,2020 年)之后,宏观量子传感器似乎即将问世。与其他量子系统相比,纳米球的质量较大,这增强了纳米粒子对引力和惯性力的敏感性。从这个角度来看,我们描述了光学悬浮纳米粒子实验的特点(J. Millen、TS Monteiro、R. Pettit 和 AN Vamivakas,“悬浮粒子的光力学”,Rep. Prog. Phys.,第 83 卷,2020 年,艺术编号 026401)及其在加速度传感方面的拟议用途。悬浮纳米粒子平台的独特之处在于它不仅可以实现量子噪声限制的传导,量子计量学预测其灵敏度将达到 10 − 15 ms − 2 量级(S. Qvarfort、A. Sera fini、PF Barker 和 S. Bose,“通过非线性光力学进行重力测量”,Nat. Commun.,第 9 卷,2018 年,文章编号 3690),而且可以实现长寿命量子空间叠加以增强重力测量。这遵循了开发利用叠加或纠缠的传感器(如冷原子干涉仪)的全球趋势。得益于这些现有量子技术的重大商业开发,我们讨论了将悬浮纳米粒子研究转化为应用的可行性。
在超导磁磁火车的情况下,《车身车身法案中的超导磁铁》涉及导向器中的悬浮和指导线圈。在超导磁体和引导线圈之间作用的磁力强度与超导磁铁移动的速度成比例(即车身移动的速度),因此车身车身移动的速度越快,悬浮和导向管线圈产生的磁力越强,车身体抬起的磁力就越高。
摘要。使用机器学习方法悬挂的沉积物估计。河流中的悬浮沉积物对于有效使用水资源和液压结构很重要。在这项研究中,使用传统的多线性回归(MLR),机器学习方法(例如支持向量机(SVM)(SVM)和M5决策树(M5T)估算了河流的悬浮沉积物负载。每日流,每日最高和最低水温以及河流中悬浮沉积物浓度的数据都用作所有模型中的输入数据,以预测每日悬浮的沉积物排放。根据统计方法评估所有方法的性能。确定系数(R 2),均方根误差(RMSE)和平均绝对误差(MAE)用作比较标准。总体而言,机器学习方法更好地预测了悬浮的沉积物排放。关键字:沉积物放电,预测,线性回归,支持向量机,M5树。简介
1。引言随着工业产品开发的进展,这些产品中使用的部分变得越来越复杂。空心处理技术用于处理此类复杂零件。有两种类型的中空加工技术,一种在成型前进行了一个零件,而在成型后进行了处理。在成型后进行空心处理时,很难在内部处理具有复杂形状的物体。因此,已经提出了超导辅助加工(SUAM),其中将永久磁体在散装超导体上悬浮以通过利用超导体的磁通量插入现象来处理对象[1,2]。永久磁铁是单侧的4极磁铁,并通过使用散装超导体悬浮。磁铁的悬浮之所以发生,是因为磁铁在空气中固定并在磁场中冷却,即场冷(FC)。然后,当超导部分由于固定效果而旋转时,永久磁铁旋转。因此,可以通过永久磁铁表面从内部抛光材料。
图表列表 第页 图 1-1 通用原子公司城市磁悬浮车辆采用以 Halbach 阵列配置排列的永磁体实现悬浮和推进 ............................................................................. 1-2 图 1-2 双 Halbach 阵列悬浮磁铁可提高升阻比,并提高主悬挂系统的刚度......................................................................... 1-2 图 1-3 试验轨道现场鸟瞰图 ......................................................................................................... 1-3 图 1-4 已完成的 120 米试验轨道基础和第一个 15 米导轨焊接件(左)。右图为已完成并准备翻转的导轨模块..................................................................................................................... 1-4 图 1-5 第一节轨道上已完成的测试底盘..................................................................................................... 1-4 图 1-6 车辆悬浮、推进和引导系统............................................................................................................. 1-5 图 1-7 绞合轨道的半自动焊接工艺可实现一致的接头电阻......................................................................... 1-5 图 1-8 电气室视图,其中装有整流器、变频逆变器和列车保护设备..... 1-6 图 1-9 测试期间的典型间隙和速度曲线将允许对车辆动力学进行评估.............................................
山梨县的米仓山光伏电站已经演示了使用高温超导磁轴承 (SMB) 的飞轮储能系统 (FESS) 的应用。为了将 FESS 作为一种能够防止取消再生制动的系统应用于铁路,必须增加其储能容量。因此,进行了高达 158 kN 的悬浮力试验和确定悬浮力蠕变特性的试验,以验证 SMB 悬浮力的裕度。此外,为了评估 SMB 悬浮和旋转特性在转速反复变化下的长期可靠性和耐久性,正在开发能够同时测试 SMB 悬浮和旋转状态的新型 SMB 测试设备。
摘要:当前的显微活性剂目标是扩展其通常很小的工作范围,这通常是由悬臂施加的机械连接和恢复力造成的。为了克服这一点,我们提出了一个可靠的悬浮设置,以实现磁性防护质量的自由垂直运动。通过叠加永久性磁场,我们将两个平衡位置印记,即在地面板上,并在预定的高度上悬浮。通过压电堆栈执行器的合作来实现两个静止位置之间的能量 - 良性切换,最初加速了证明质量,并随后进行电磁控制。通过在共同设计中同时优化控制器和设计参数,可以找到强大的平衡位置与能量良好的转变之间的权衡。基于平局的控制器来跟踪所获得的轨迹。仿真结果证明了组合优化的有效性。