封面封面是Nadesh Ligthart的“艺术创作”一词的定制版本。它说明了HTSM路线图高级仪器的动作计划。这些图像是基于先进的科学知识和共同创造的荷兰公司制造的高级仪器和市场产品:•ASI X射线,电子和离子摄像机,用于颜色X射线,电子显微镜,电子显微镜和质谱基于为高能物理学开发的技术开发的技术•cesine silicon silicon pore x-ray and poce poce x-ray and prompt interrantions promist intermitions范围••固定型材料,••材料•材料•材料,以•材料的固定量,覆盖量的固定量,覆盖量,•由高能水电构造制造的部分,也用于大型的真空系统,用于科学设备的大型真空系统光学11微米悬臂纤维纤维传感器基于荷兰微型技术和光纤研究MalvernPanalytical Medipix探测器,用于高能物理学,用于X射线散射仪和X射线散射仪的高能量nite;大学研究VDL/TNO支持ELT天文望远镜的主要镜子的支持结构以及Boessenkool Machinefabriek BV,Heinmade,Hositrad真空技术和Sumipro Insprosron lathing BV的产品。
摘要:微机电系统 (MEMS) 的最新进展为生物和化学分析物的无标记检测 (LFD) 带来了前所未有的前景。此外,这些 LFD 技术提供了设计高分辨率和高通量传感平台的潜力,并有望进一步小型化。然而,将生物分子固定在无机表面上而不影响其传感能力对于设计这些 LFD 技术至关重要。目前,自组装单层 (SAM) 的共价功能化为提高检测灵敏度、可重复性、表面稳定性和结合位点与传感器表面的接近度提供了有希望的途径。在此,我们研究了使用化学气相沉积 3-(缩水甘油氧基丙基)-三甲氧基硅烷 (GOPTS) 作为多功能 SAM 对 SiO 2 微悬臂阵列 (MCA) 进行共价功能化,以实现具有皮克灵敏度的碳水化合物-凝集素相互作用。此外,我们证明了使用传统压电微阵列打印机技术将聚糖固定到 MCA 是可行的。鉴于糖组的复杂性,以高通量方式发现样本的能力使我们的 MCA 成为分析碳水化合物-蛋白质相互作用的稳健、无标记和可扩展的方法。这些发现表明,GOPTS SAM 为 MEMS 提供了合适的生物功能化途径,并提供了可以扩展到各种 LFD 技术以实现真正高通量和高分辨率平台的原理证明。
警告 1. 电磁辐射水平以伏特/米 (V/m) 为单位。每辆电动轮椅都能抵抗一定水平的电磁干扰。这被称为“抗扰度”。 2. 抗扰度越高,电磁干扰风险越低。据信,20 V/m 的抗扰度水平将保护电动轮椅用户免受更常见的无线电波源的影响。 3. 经测试,发现至少可抵抗 20 V/m 的常见配置是:Quickie QM-710 电动轮椅,右侧安装有 RNET 远程操纵杆系统,座椅宽度为 18 英寸,座椅深度为 18 英寸,Omni2 专业控制模块,电动倾斜座椅,悬臂扶手,电动倾斜,ELR ALR 电动腿托,服务模块,蓝牙鼠标移动器,I-device 鼠标移动器,输出模块,Gp 24 凝胶电池。 4. 所有售后输入设备选项(分类为呼吸控制、比例控制和/或可与此电动轮椅一起使用的开关控制)对其对不同类型 EMI 的免疫水平有未知影响。它们尚未使用 QM-710/715HD/720 和 RNET 控制系统进行专门测试:5. 已安装符合 ANSI/RESNA WC2/21 的通用配置所需的所有修改
摘要以其几何自由度和准确性而闻名的激光粉床融合(LPBF)以及以高堆积速率而闻名的基于喷嘴的激光金属沉积工艺(LMD)的组合具有减少大型金属零件的添加性制造时间的巨大潜力。对于LPBF-LMD混合过程链的工业应用,有必要研究LMD过程对LPBF底物的影响。此外,构建板材还对沿添加剂制造工艺链的失真发生有很大的影响。在文献中,钢制构建板经常用于Inconel 718的基于激光的添加剂制造过程中,因为可以确保良好的冶金结合,同时降低制造板的生产和恢复成本。本文研究了由LMD材料沉积引起的变形以及沿混合添加剂制造工艺链的构建板材料的影响。双悬臂是由LPBF制造的,随后将一层放置在LMD中。失真均在井期和热处理后的状态下测量。确定不同LMD孵化策略对失真的影响。实验是使用镍基合金inconel 718进行的。结果显示了LMD路径策略对失真的显着影响,较短的工具路径会导致失真较少。热处理后的剩余失真在很大程度上取决于构建板的材料。
应变促进炔烃-叠氮化物环加成 (SPAAC) 已成为生物正交结合和表面固定中不可或缺的工具。虽然许多研究都集中于增强环辛炔的反应性,但是仍然缺少一种无需任何复杂设施即可评估环辛炔-叠氮化物固定化结合效率的简便方法。在本研究中,与荧光团或生物素部分连接的二苯并环辛炔/双环壬炔 (DBCO/BCN) 的不同衍生物被图案化在超低污染聚合物刷上,这可以在不进行任何先前的封闭步骤的情况下避免非特异性蛋白质污染。聚合物刷由防污底部嵌段和叠氮化物封端的顶部嵌段组成。使用普通荧光显微镜对通过微通道悬臂点样 ( μ CS) 点样的有序阵列进行结合效率的评估。两种环辛炔均通过 μ CS 与含叠氮化物的二嵌段聚合物刷表现出可靠的结合性能,但根据蛋白质结合试验,DBCO 显示出更高的分子固定表面密度。这项工作为选择合适的环辛炔与叠氮化物偶联提供了参考,并可用于设计用于分析物检测、细胞捕获和其他生物应用的生物传感器或生物平台。
摘要以其几何自由度和准确性而闻名的激光粉床融合(LPBF)以及以高堆积速率而闻名的基于喷嘴的激光金属沉积工艺(LMD)的组合具有减少大型金属零件的添加性制造时间的巨大潜力。对于LPBF-LMD混合过程链的工业应用,有必要研究LMD过程对LPBF底物的影响。此外,构建板材还对沿添加剂制造工艺链的失真发生有很大的影响。在文献中,钢制构建板经常用于Inconel 718的基于激光的添加剂制造过程中,因为可以确保良好的冶金结合,同时降低制造板的生产和恢复成本。本文研究了由LMD材料沉积引起的变形以及沿混合添加剂制造工艺链的构建板材料的影响。双悬臂是由LPBF制造的,随后将一层放置在LMD中。失真均在井期和热处理后的状态下测量。确定不同LMD孵化策略对失真的影响。实验是使用镍基合金inconel 718进行的。结果显示了LMD路径策略对失真的显着影响,较短的工具路径会导致失真较少。热处理后的剩余失真在很大程度上取决于构建板的材料。
US 11,016,119 B1 1 2 MONOLITHIC ATOMIC FORCE In view of the above problems , we proposed a novel class MICROSCOPY ACTIVE OPTICAL PROBE of probes for atomic force microscopy ( AFM active optical probe - AAOP ) by integrating a laser source and a photo CROSS REFERENCE TO RELATED detector monolithically into the AFM probe [ Actoprobe APPLICATIONS 5 2015 ] .AAOPS被设计为在召开AFM中使用,以通过包括本申请的索赔优先级和优先级来增强其功能,以上提到的仪器(NSOM,TERS,TERS,混合访问应用程序编号62 / 415,097于2016年10月31日提交,AFM)。 这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。 10添加,同时提供有关纳米级样品的Opti cal特性的信息。 本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。 AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。 AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。 传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。 硅,im和GAAS。 (DBR)镜子。62 / 415,097于2016年10月31日提交,AFM)。这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。10添加,同时提供有关纳米级样品的Opti cal特性的信息。本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。硅,im和GAAS。(DBR)镜子。提出了严重的问题,可能会影响由于具有不同热膨胀常数的材料的粘结背景而产生的应变,即纳米级的光学表征当前需要NSOM(发明光学显微镜的接近 - 现场扫描摘要),TERS(TIP-增强的Raman Spectros副本)或Hybrid AFM(其中包括专门的FAR -FAR -FAR -FAR -FIEL -FIELD -FIELD 25本发明的对象都提供新型的光学显微镜)。class of probes for atomic force microscopy ( monolithic Attempts at integrating atomic force microscopy and AFM active optical probeML AAOP ) by integrating a optical techniques have already been made and several laser source and a photodetector monolithically into the products based on these schemes have found their way into AFM probe , based entirely on GaAs or similar lasing the market .可商购的,具有Inte-30材料的AFM尖端,从而避免使用有害的GAAS / SI杂化片状波导(空心尖端)。带有外部激光源[Celebrano 2009]。本发明构成了一种制造成本方法的方法,其固有的局限性就整体,集成的光学AFM探针而言。可以传递的最广泛的光学分辨率和光功率。用于原子力显微镜的使用的探针被制造得可实现高侧分辨率使用硅技术的接近磁场35的大小。此方法有限作为光学设备制造的基础。相比之下,ML AAOPS是孔需要减少的,因此导致完全由GAAS制造的指数,半导体材料的光电输出减少。具有最终分辨率和检测器功能的近距离显微镜的激光应用可以通过大约50 nm的外延生长来实现,但不适用于光学结构。边缘 - 发射激光二极管,轻度指南和EFFI光谱,由于功率输出较小。40个满足的光电探测器是通过对旨在更好地整合光区域(Epi-层)的活跃的其他方法来制造的,而AFM尖端是用源和AFM尖端制造的,通常涉及将特殊成长的GAAS外部外在过度层层附加到一个预先制动的光源(Edge Expriced semitter,vcse)的顶部(vcse vcse sepge a veriide a cert a py a veriide a cert a c。 AFM Cantilever探针(混合方法)[Bargiel Epi-激光结构的层。GAAS的选择是2006年,Kingsley 2008]或光源45的制造,直接在AFM尖端上直接在AFM尖端上建立的制造技术的基础[Heisig 2000a,Heisig,Heisig 2000b,nology,nology,允许时间和成本 - 有效的制造 - 有效的制造Hoshino Hoshino Hoshino 2008,Hoshino 2009,Hoshino 2009]。在这些情况下,探针的光学。本发明的实践很容易被探测到探针中。成本 - 有效地使它们负担得起,以实现本发明的说明性体现,即Tific社区。是在AFM尖端制造的激光波长[AN 2008]。杂种扩展到替代III -V半导体,例如INP,方法仅显示在研究实验室和GAP,GAP,GAS和GAN中起作用,以扩大可用的波长,很难想象如何将光学探针从UV到可见的和Mid -Midrared制造50个覆盖率。此外,在激光腔中常用的VCSEL由两种分布式bragg反射器定义,这种方法的光输出功率受到限制。第一个激光镜是标准的第一阶 - 另外,单个集成的光电视也具有dbr光栅(周期 / 2ng,其中h。< / div>光电探测器-55和NEF是仅GAAS波的有效折射率[AN 2008]不能解决指导的困难),该指标可确保将光源对齐在AFM尖端上的激光单个纵向模式,并进行要求。第二激光镜是降低检测器尺寸的第二个订单DBR,以实现位于悬臂末端的空间光栅(周期为n / neft)。IT分辨率直接与将用作用作折叠镜的要求矛盾,该镜子将光线(以获得高60 AVITY激光模式获得的最大可能的检测区域)垂直地进入Nansoscale上光学上的灵敏度水平的AFM尖端中。具有集成的LED光源和Pho-Ridge波导的AFM尖端顶部的特殊生长的GAA外延层层。尖端探头,光源(GAAS LED)被简单地粘在65本身上,是扮演悬臂芯片作用的总内反射棱镜。因此,激光产生的光已证明是todeTector [Sasaki 2000],但是虽然将耦合到GAAS探针的表面模式(锥形光电探测器(锥形光电探测器)中)并转移到尖端顶点。这不足以满足需求 - 输出镜,第三镜,在激光腔中。高功率,单波长操作的精神。GAAS微型 - 棱镜将激光光引导到尖端顶点和
1.1 复合直升机的示例.......................................................................................................................................................3 1.2 倾转旋翼飞机的示例.......................................................................................................................................................3 1.3 前飞对后飞桨叶速度的影响.......................................................................................................................4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后飞桨叶升力来平衡旋翼力矩的需要,可以缓解后飞桨叶失速,就像单旋翼飞行器一样(左图)[5]。................................................................ ..................................................................................................................................................................................4 1.5 兰利全尺寸风洞中的 PCA-2 转子试验装置 [11]。...9 1.6 采用悬臂转子配置的 Meyer 和 Falabella 风洞试验装置 [12]。......................................................................................................................................................................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾音器 [12]。 12 1.9 1965 年詹金斯在兰利全尺寸风洞中的试验装置 [13]。 14 1.10 高进速比时转子推力和 H 力系数与总距(A0)的关系,显示总距推力反转 [13]。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.13 在增加前进比的情况下,在盘面载荷恒定的情况下测得的有效旋翼升阻比 [16]。 . . . . . . . . . . . . . 21 1.14 升力对总距比和前进比的敏感度变化 [16]。 . . . . . 22 1.15 在 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中监测 UH-60A 空气载荷旋翼 [17]。 . . . . . . . . . . . . . . 24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。 . ...
地下深度应从底部的底部到完成等级至少30英寸。的基础应在高程变化时进行阶梯阶段并连续。应将所有木地下表格删除以进行基础检查。基础高度应允许以下所有最低限度:1)30英寸以下的平台深度2)级别2)6英寸高于饰面3)7级级别的基础,完成的一般地下室天花板4)12英寸+ 2%+ 2%的街道上的街道上的街道上的加固钢的间距不得超过24英寸,除非计划或工程或工程或工程或工程。在所有基础开口的顶部都需要至少2#4的钢筋,延伸到开口前24英寸。将安装一个单个#4钢筋,将其安装到侧面和开口下。湿damp验证均需要将地下室封闭以下等级以下的所有基础。地下室,带有可居住的空间和每个卧室的窗户或窗户应符合以下窗户:地板44英寸内的成品窗台高度;最低净净明显开放面积为5.7平方米ft。最小开口宽度为20英寸,最小开口高度为24英寸。级地板开口可能具有最低净净开口的5平方英尺。(将等级定义为窗台开口不超过相邻成品的地面表面上方或下方的44英寸。)窗口井提供所需的出口窗口应与窗户所需的最小值保持尺寸:1)44英寸最大深度(或提供永久梯子梯级)2)36英寸从窗户正面到窗户正面的水平间隙。(9平方米ft。需要“地板面积”。)3)36“垂直间隙,从上述水平清除的任何投影(凸窗,悬臂,甲板等)在基础或基础上提供一个混凝土包裹的接地电极(UFER地面)。
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。