摘要。基于模态的降阶模型因其在工程问题中的计算效率而成为结构建模的首选。经典模态方法的一个重要限制是它们是几何线性的。本研究提出了一种快速校正方法来解释由悬臂梁的大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加的额外计算工作量可以忽略不计。在直梁模型和国际能源署 (IEA) 15 MW 风力涡轮机叶片模型上检验了该方法的准确性。结果表明,对于所研究的两种情况,所提出的方法显著提高了模态方法在轴向和扭转运动等非线性引起的二次挠度方面的准确性。
摘要。基于模态的降阶模型因其在工程问题中的计算效率而成为结构建模的首选。经典模态方法的一个重要限制是它们是几何线性的。本研究提出了一种快速校正方法来解释由悬臂梁的大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加了可忽略不计的额外计算工作。在直梁模型和国际能源署 (IEA) 15 MW 风力涡轮机叶片模型上检验了该方法的准确性。结果表明,对于所研究的两种情况,所提出的方法显著提高了模态方法在由于轴向和扭转运动等非线性引起的二次挠度方面的准确性。
顾名思义,悬臂梁 MEMS 开关是一种由机械位移控制的电开关。它由两个主要部分组成:底座和悬臂梁(图 1)[1]。悬臂梁由导电材料制成(或其一部分,取决于设计),通常是铝。底座上沉积有一层导电材料层。在设备的这两个导电部分之间施加电压后,形成一个有限平行板电容器 [2, 3],由于电容器板之间的静电吸引力 [4, 5],悬臂梁开始向底座弯曲。悬臂梁以弹性反作用力 [6] 作出反应,并在两个力抵消的位置停止。在某个电压(驱动电压)[7–10] 下,力之间的平衡变得不稳定,悬臂梁在底座上坍塌 [11],从而建立电容器板之间的接触并闭合电路。在该模型中,认为下电极上没有沉积介电层(因此极化电荷可以忽略不计 [12])。新的理论模型考虑了有限平行板电容器中的边缘效应。将理论上获得的驱动电压与计算机模拟的 MEMS 设备驱动电压进行了比较。
(1)DIN 53504,S2 (2)ISO 527-2,1A (3)维卡/A(10 N)/°C - DIN EN ISO 306 (4)悬臂梁缺口试验方法A,ASTM D256
摘要:本文介绍了一种采用突跳屈曲 (STB) 机制进行频率上转换 (FuC) 的压电能量收集器。该收集器由两个主要部件组成:双稳态机械结构和一个压电悬臂梁。该装置采用分析方法和数值模拟设计。制造了一个概念验证原型并在低频机械激励下进行了测试。实验结果表明,如果从第二个稳定配置回到未变形配置,如果诱发 STB,则可以获得 FuC,并且梁的响应会呈现很宽范围内的频率分量,即使悬臂梁的共振频率没有被激发。因此,结果与预期行为一致:如果强制处于第二个稳定配置的设备受到幅度超过阈值的低频激励,则会触发 STB,随后的 FuC 会导致梁振动频率范围扩大,从而显著提高功率输出效率。通过使用最佳电阻负载作为 STB,从双稳态机制的一个稳定配置触发另一个稳定配置,可获得 4 mW 的最大功率;如果采用带储能电容器的整流电路,可获得 4.5 µJ 的最大能量。
学习知识博士学位2014-2020 Yildiz技术大学,自然和应用科学研究生院,土木工程,土耳其研究生研究生2011年至2014年 - 2014年Yildiz技术大学,自然和应用科学研究生学院,土木工程学院,土耳其土耳其,2007年 - 2011年Erciyes University,Erciyes University,MühendislikFakültesiturkey turly turkey turikey trike turikey tryby try tryishoundusun i i yh trightik frikey。博士学位,研究回收骨料对混凝土特性的影响,Yildiz技术大学,自然和应用科学研究生学院,土木工程,土木工程,2020年研究生,对悬臂梁的机械行为进行检查,该悬臂梁的机械行为是由循环汇总的汇总汇总大学,Yildiz Condiper of Native and Applied Indoritiation,Inderivie norderied Enkities,Nortering Enkitied,2014年的综合汇总学院,2014年 - Contins vanYüzüncüYil大学,MühendislikFakültesi,İnşaatMühendisliğiBölümümümümümü助理教授2021 - 2025 vanyüzüncüncüncüyil yil Yil University,mühendislikfakültesi,MühendisliSliSISI
本研究的主要目的是研究夹层复合材料的分层损伤。夹层结构的这种损伤模式对结构行为尤其有害。芯部开裂和表面/芯部分离是软木团芯夹层结构中常见的失效模式。这些测试的夹层样品由软木团芯制成,夹在玻璃纤维聚酯(04 层层压板)之间作为表皮。实验研究包括精心制作不同类型的夹层样品,以确定它们在模式 I 中的断裂。双悬臂梁 (DCB) 样品通过初始裂纹的大小来区分。后者是通过在精心制作过程中在芯部和上层表皮之间放置具有不同初始裂纹长度(a= 30、40、50、60 和 70 毫米)的铝膜来获得的。裂纹的萌生
几年前电子设备的功率要求很高。但是,随着基于Internet的系统的技术发展,低功率的微电子设备的设计,WSN和IoT设备的设计变得必要。在这些系统中,大小和功率要求很低,在大多数情况下,电池的替代是具有挑战性的。对于这些微电子和物联网设备,丰富的能量收割机非常有用。在不同的丰富能源资源中,用压电悬臂束能量收割机收集振动能量。这项研究工作介绍了能量收割机(EH)的设计和分析,该功能收割机(EH)中包含一个单个压电悬臂梁,该悬挂式横梁捕获了悬架桥的振动能量。这种方法通过将压电能量收获构建为解决低功率设备面临的力量挑战的解决方案,将两件事联系在一起,从而使过渡变得更加自然和连接。设计中的主要挑战是将桥梁的共振频率与压电EH相匹配,该压电EH约为2.5Hz,以提取最大功率。为了克服Comsol多物理学中的特征频率分析。单光束压电EH的3D几何形状是在Comsol多物理固体作品中设计和分析的。在这项研究工作中,基于COMSOL多物理学中的第一个六种特征频率分析,单光束压电频率的几何参数与特征频率之间建立了关系。选择(0.98 m/s²)的力是因为它避免了与关键系统组件共鸣。对于有限元分析(FEA),通过在悬架桥中施加等于振动力(0.98m/ s2)的力来振动压电单光束收割机。收割机的输出的共振频率为2.5Hz。压电的输出为2.5Hz的800毫米伏特非常低。还将压电EH的输出结果与具有单分支结构的悬臂梁进行了比较。
摘要。在许多工程应用中,结构的振动分析需要设置大量传感器。这些研究大多在后处理中进行,并基于线性模态分析。然而,许多研究的设备强调模态参数取决于振动水平非线性,并使用加速度计等传感器来修改设备的动态特性。这项工作提出了一种基于实时识别非线性参数(固有频率和阻尼)的模态测试的重大发展,这些参数以线性模态为基础进行跟踪。这种方法称为运动学-SAMI(用于多传感器同化模态识别),首先在已知非线性的数值情况下进行评估,其次在具有非接触式测量技术(高速高分辨率摄像机)的经典悬臂梁框架中进行评估。最后,讨论了该方法的效率和局限性。