1977 年,克服了青少年时期的挑战,基于环形激光陀螺仪 (RLG) 的内部导航系统必须成长为成年人,找到工作并谋生。当时尚不清楚 RLG 的职业道路应该专注于军事应用(其之前的大部分研究和资金都针对此类应用)还是蓬勃发展的商用飞机业务。在军事领域,占主导地位的机械陀螺仪已经达到了一定的尺寸、成本、性能和价格点,这导致霍尼韦尔针对新技术的营销策略变得困难。克服空军和海军采购过程的惯性(双关语)及其严格而多样化的性能要求,对年轻的霍尼韦尔部门提出了挑战,该部门急于用这条新产品线证明自己的勇气。为了向上发展,年轻人需要一个合作伙伴,最好是一个实力雄厚、雄心勃勃、财力雄厚的合作伙伴,以建立企业联姻,提升 RLG 的地位。
以固定翼飞机为例,开发了一种基于矢量场输入的状态相关 LQR 控制器,以及从误差状态和李群理论得出的 EKF,以估计飞机状态和惯性风速。通过蒙特卡罗模拟证明了这种控制器/估计器组合的稳健性。接下来,通过使用阻力系数、部分更新和关键帧重置增强滤波器,提高了多旋翼飞行器最先进的 EKF 的准确性、稳健性和一致性。蒙特卡罗模拟证明了增强滤波器的准确性和一致性得到了提高。最后,推导出使用图像坐标的视觉惯性 EKF,以及用于估计精确视觉惯性估计算法所需变换的离线校准工具。通过数值模拟还表明基于图像的 EKF 和校准器在各种条件下都具有稳健性。
全球定位系统 (CPS) 和惯性导航系统 (JNS) 都可视为提供位置和速度信息的离散系统,它们曾被视为潜在的竞争技术。在本文中,我们探讨了当前更流行的观点,即 CPS 和 !NS 之间的互补或协同关系可以促成导航天堂的结合。我们的作者是 Marvin B. May,他是海军指挥和控制海洋监视中心(海军研究与发展 - NRaD);研究、开发和技术部;位于宾夕法尼亚州沃明斯特 1。这是 May 为“创新”撰写的第二篇文章。他的第一篇“使用 CPS 测量速度”发表在 1992 年 9 月的 GPS World 上。本文中表达的观点和事实仅代表作者,不代表海军部。
图 1:NACA 空中数据臂设计,在 UTSI Cessna 210 右翼尖配备流动角叶片。 .............................................. 1 图 2:惯性(东北向下)坐标系。来源:USAF TPS [6]。 .............................................................................. 5 图 3:机身固定坐标系。来源:USAF TPS [6]。 ............................................................................................. 6 图 4:流动角参考系。u、v、w 分别是机身固定参考系上 x、y、z 方向的速度矢量。来源:NASA [9] ......................................................................................................... 8 图 5:X-Z 轴上的攻角、俯仰角和飞行路径角视图。来源:波音航空杂志 [11]。 ... 9 图 6:不同情况下攻角和俯仰角的差异 [12]。 ............................................................................. 9 图 7:由于升力要求,平飞中的攻角会发生变化 [12]。 ................................................................ 9 图 8:估算 Oswald 效率因子的方法。来源:Roskam [15]。 .............................................................. 16 图 9:阻力系数随马赫数变化的典型变化。来源:Kroo [16]。 .............................................................. 18 图 10:烟气风洞试验中机翼上方的上洗流。来源:Babinksy [17]。 ..............................................................
我要感谢 José Neira 和 Silvère Bonnabel 教授让我有幸同意报告这篇论文,感谢审稿人 Samia Bouchafa、Pascal Vasseur 和 Michel Dhome 教授对我的工作和研究感兴趣。决定授予我医师职称。我要感谢我的论文导师 Guy Le Besnerais。他非常投入、要求严格、坦率并且总是关心我,他成功地促使我写出一篇好的论文,总是提供明智而有效的建议。我感谢大卫·维西埃,他以他传奇般的热情为这项工作提供了最初的动力,他直到最后都信任我,即使他对所采取的方向有疑问。尽管中小企业的担忧在科学博士学位的学习期间通常很难预测,但我最终拥有了很大的自由和自主权。我要非常感谢 Martial 和 Alexandre:我在论文的技术和科学方面以及其一般行为方面获得了特权。感谢 Martial 与我分享您在视觉里程计和传感器方面的经验、您的幽默感和善良。感谢 Alex 的技术讨论,这使我能够在提供技术细节(通常是枯燥的(肮脏的?))、有用的含义和值得告诉他们的兴趣的同时,提高我的理解。如果没有您精心的校对工作,论文的质量就无从谈起
� 卫星定位和惯性导航 (SPIN) 实验室成立于 2002 年,是隶属于土木与环境工程和大地测量科学系 (CEEGS) 和测绘中心 (CFM) 的跨学科研究中心
闪耀陀螺仪 - 飞机捷联惯性导航技术的演变 Paul G. Savage Strapdown Associates, Inc. (SAI) WBN-14009 www.strapdownasociates.com 2015 年 5 月 29 日 最初发表于 AIAA 制导、控制与动力学杂志第 36 卷第 3 期,2013 年 5 月 - 6 月,第 637-655 页 简介 惯性导航是通过车载惯性传感器(陀螺仪和加速度计)提供的角旋转和线性加速度测量值自主计算移动车辆的位置和速度的过程。第一个惯性导航系统 (INS) 是由麻省理工学院仪器实验室(最终成为 Charles Stark Draper 实验室)为弹道导弹制导而开发的 [1]。此后不久,该技术被应用于飞机导航,最终有四家公司在 20 世纪 60 年代主导了美国飞机惯性导航 (INS) 行业:霍尼韦尔航空航天和国防集团,其陀螺仪设计/制造位于明尼苏达州明尼阿波利斯,惯性导航设计/开发/制造位于佛罗里达州克利尔沃特;Kearfott 位于新泽西州韦恩;利顿制导与控制部门位于加利福尼亚州伍德兰希尔斯,通用汽车的 Delco 电子部门位于威斯康星州密尔沃基。霍尼韦尔专注于高精度系统,并推出了一种用于精密应用的新型静电悬浮陀螺仪 (ESG) 技术。Delco 专注于使用 Carousel IV 系统(一种变体)的跨洋商用和军用货运/加油机应用
汽车惯性导航 (ADR) 是 u-blox 为一级汽车客户提供的业界公认的现成惯性导航解决方案。u-blox 的 ADR 解决方案使用紧密耦合的卡尔曼滤波器将 GPS 和传感器数字数据结合在一起。这可以在没有 GPS 信号或 GPS 信号减弱期间提高定位精度。NEO-6V 通过其软件传感器接口提供 ADR 功能。支持各种传感器(例如车轮转速计和陀螺仪),传感器数据通过来自应用处理器的 UBX 消息接收。这允许轻松集成和简单的硬件接口,从而降低成本。通过使用车辆总线上可用的数字传感器数据,硬件成本被最小化,因为惯性导航功能不需要额外的传感器。ADR 专为简单集成和轻松配置不同传感器选项(例如带或不带陀螺仪的)和车辆变体而设计,并且完全可自我校准。
• SAGA、QKDSat • 惯性导航 • GNSS 测试:• LIDT 和 LICT 测试设施 • 激光二极管老化和寿命测试设施 • 探测器测试设施 • 移动激光雷达设施 • 光学地面站 (OGS)
• 1995 年率先将 GPS 辅助惯性导航用于机载传感器数据的直接地理定位商业化 • 近 20 年直接地理定位应用研发经验 • 拥有 100 多名员工、业绩辉煌的公司