工业的快速发展需要更多的能源来支持其制造过程。不幸的是,传统能源主要被用作对自然不利且会破坏环境的主要能源。如今,从使用传统能源向使用可再生能源的转变在世界范围内日益普及。然而,可再生能源的存在给电力系统带来了新的挑战,其影响是降低传统能源(如热发电机)的惯性(无惯性)值。这种情况会导致频率振荡并导致电力系统停电。为了解决这个问题,本文提出了基于超导磁能存储(SMES)的先进虚拟惯性控制(VIC),用于适应可再生能源融入电力系统的影响。之所以选择 SMES,是因为它具有快速响应和高达 90% 的效率。利用双区域电力系统模型来检验基于 SMES 的 VIC 模型。从仿真结果来看,基于的VIC通过压缩系统超调量、减少稳定时间,成功减少了频率振荡。
摘要 - 在本文中,提出了针对临时频率SUP端口的风力涡轮机发电机(WTG)和超级电容器能量系统(ESS)的协调控制方案。惯性控制是通过使用发电机扭矩lim的 - 考虑了WTG系统的安全性,而ESS则释放其能量以补偿涡轮转子恢复过程中突然的活动功率不足。wtg是使用疲劳,空气动力学,结构,湍流(快速)代码进行建模的,该代码识别了风能系统中的涡轮机和AD装饰的机械相互作用的机械载荷。在频率支撑期间,将阻尼控制器扩展到惯性控制中,以抑制涡轮机的严重机械振荡。此外,小信号稳定性分析的结果表明,WTGESS倾向于提高整个多能电网的稳定性。本文的主要贡献将通过利用提出的控制方法来介绍,该方法结合了网格支持能力并维持涡轮机的结构设计的完整性,以进行正常操作。
间歇性可再生能源占比高会导致频率波动,从而危及电网的持续运行。液态空气储能 (LAES) 是一种新兴技术,它不仅有助于能源部门脱碳,还具有提供可靠辅助服务的潜力。本文使用混合 LAES、风力涡轮机 (WT) 和电池储能系统 (BESS) 来研究它们在快速频率控制中的贡献。惯性控制、下垂控制和组合惯性和下垂项应用于混合可再生能源系统的每个源,并进行全面分析以研究它们对频率最低点改善的影响。分析表明,具有组合惯性和下垂控制项的 LAES 以及 WT 和 BESS 的惯性控制可提供可靠的频率控制。为了进一步改善频率最低点,提出了一种模糊控制并将其应用于 LAES。所提出的控制系统提供了更适应干扰的性能。此外,还进行了实验测试,以使用实时硬件在环测试台验证所提出的控制方法。模拟和实验结果表明,当实施可变增益控制方案时,混合可再生能源系统中的 LAES 可以显著有助于频率控制。
摘要:尽管分离的微电网的部署和整合正在获得广泛的支持,但仍在研究高透明源水平下微电网频率的调节。在众多有关频率稳定性的研究中,一种关键方法是基于将额外的循环与虚拟惯性控制整合在一起,旨在模仿传统同步机的行为。在这项调查中,回顾了与岛状微电网中虚拟惯性控制方法有关的最新作品。基于对过去十年来最近论文的上下文分析,我们试图更好地理解为什么某些控制方法适合不同的情况,当前开放的理论和数值挑战,以及哪些控制策略将在接下来的几年中占主导地位。一些审查的方法是系数方法,基于H-实现的方法,基于增强学习的方法,基于实用的方法的方法,基于模糊的基于模糊的方法和模型预测的控制器。
随着BESS规模的进一步扩大,分布式发电机(DG)之间会存在区域差异。此外,集中控制的通信网络复杂且成本高。这些限制制约了集中控制的发展。研究人员正在研究分散方法,以实现本地化控制并减少通信负担。何等[9]提出了逆功率因数控制,可以实现同步和功率共享。孙等[10]分析了功率传输特性,提出了一种fP/Q控制,可更广泛地应用于电阻-电容(RC)负载。针对并网模式,提出了一种完全分散的控制方法[11],该方法使用下垂方案控制来实现模块间的同步。然而,这些分散方法没有考虑到特性和功能,例如提供惯性控制以实现友好的电网连接并实现每个电池模块中的SOC平衡。为了实现这些目标,许多研究人员一直专注于电池特性及其在电网或可再生能源系统中的功能。
在接入分布式能源的过程中,光伏发电系统面临间歇性和波动性问题,对电网的稳定性带来巨大挑战。大量研究探索了各种控制策略来应对这些挑战,包括下垂控制、虚拟同步发电机 (VSG) 控制等。然而,现有方法往往难以为电力系统提供足够的惯性和阻尼支持,尤其是在动态条件下。本文旨在通过介绍一种基于改进的光储系统中有功功率环的自适应惯性控制方法来突破这些限制。该方法旨在优化分布式光伏接入过程中出现的冲击和不稳定现象,减少系统波动,降低振荡超调,提高系统的动态性能。首先,介绍了光伏电池和蓄电池的数学模型和控制方法。其次,解释了传统 VSG 的控制原理。然后,将自适应惯性算法纳入VSG控制的有功功率环中,提出了一种基于改进有功功率环的自适应惯性控制方法。最后,通过仿真验证了所提方法的有效性。
摘要 - 未来几年,由于可再生能源 (RES) 份额的增加,电力系统将面临电力频率不稳定的问题。RES 通过电力电子转换器集成到电力系统中。RES 的运行和控制与传统能源截然不同。本文重点研究了 RES 份额上升对电力系统频率稳定性的影响及其可能的解决方案。在发生干扰时,RES 不会参与频率调节过程。尽管如此,它们仍会因输入能量的间歇性而对电力系统产生干扰。RES 没有额外的有功功率用于频率调节,因为它们已经在最大功率点运行。这些基于电力电子的发电机不像传统发电机那样具有惯性。无惯性系统会对频率变化率 (RoCoF) 和频率最低点产生不利影响。这在具有不同场景的 IEEE 9 总线系统上得到了证明。根据该分析,RES 应在干扰期间提供惯性响应。本文提出的改进虚拟惯性控制 (M-VIC) 技术通过使用外部储能系统 (ESS) 来模拟传统发电机的惯性。在 M-VIC 中,惯性响应通过控制 ESS 提供的功率的速率和持续时间来复制。所提出的技术可以更有效地降低频率最低点和 RoCoF,同时更好地利用 ESS。为了证明这一点,在 MATLAB R2019a 中模拟了 PV 集成单区域电力系统模型。