摘要简介:远程缺血条件上调会响应缺血 - 再灌注损伤,内源性保护途径。这项研究检验了以下假说:肢体远程缺血性(RIPERC)通过肾素 - 血管紧张素系统(RAS)/可诱导的一氧化物氧化物合酶(INOS)/ apelin途径发挥心脏保护作用。再灌注;假手术大鼠用作对照。RIPERC是由四个周期(5分钟)的肢体缺血再灌注以及双侧肾脏缺血引起的。通过肾脏(BUN和肌酐)和心脏(肌钙蛋白I和乳酸脱氢酶)损伤生物标志物评估功能性障碍。结果:肾脏I/R损伤增加了RIPERC组减少的肾脏和心脏损伤生物标志物。肾脏和心脏的组织病理学发现也暗示了改善损伤引起的RIPERC组的变化。心脏电生理学的评估表明,RIPERC可以改善P波持续时间的下降,而不会显着影响其他心脏电生理学变化。此外,肾脏I/R损伤增加了血浆(322.40±34.01 IU/L),肾脏(8.27±1.10 mIU/mg的蛋白质)和心脏(68.28±10.28±10.28 miU/mg蛋白质/毫克蛋白质)蛋白质 - 蛋白质)血管素 - 转换剂量(ACE)的升高和培训均与升高相关性。 (25.47±2.01&16.62±3.05μmol/L)和硝酸盐(15.47±1.33&5.01±0.96μmol/L)级别;这些变化被RIPERC逆转。此外,肾脏缺血 - 再灌注损伤显着(P = 0.047)降低了肾脏(但不是心脏)Apelin mRNA的表达,而肾脏和心脏ACE2(P <0.05)和INOS(p = 0.043)mRNA表达显着增加了。这些作用在很大程度上被RIPERC逆转。结论:我们的结果表明,RIPERC可以保护心脏免受肾脏缺血 - 再灌注损伤,这可能是通过Apelin与RAS/Inos途径的相互作用。
丁酸酯是一种关键的细菌代谢产物,在调节上皮屏障的免疫和维持中起重要而复杂的作用。其转化为诊所的限制受生物利用度,刺激性的气味以及对高剂量的需求以及有效的分娩策略的需求,尚未实现临床潜力。这里是一个新型的聚合物输送平台,用于可调节且可持续的丁酸酯释放,由甲基丙烯酰胺主链与丁酰胺酯或苯基酯侧链以及甘露糖基侧链组成,该链也适用于其他治疗疗法相关的代谢物。探索了该平台在治疗非治疗糖尿病伤口方面的效用。这种含丁酸酯的材料在体外调节了免疫细胞的活化,并引起了可溶性细胞因子和趋化因子信号的惊人变化。这种新颖的疗法通过调节伤口中存在的可溶性信号来治疗非治疗伤口的效率,并且重要的是适应与伤口愈合过程有关的关键时间调节。目前,解决非愈合伤口的少数疗法表明效应有限。这个新颖的平台定位,可以解决这种巨大的未满足的临床需求,并改善其他非污染伤口的闭合。
伤口愈合是一个非常动态和复杂的过程,因为它涉及患者、伤口水平参数以及生物、环境和社会经济因素。其过程包括止血、炎症、增殖和重塑。对血管生成、炎症、结缔组织基质修复、伤口收缩、重塑和上皮再形成等伤口成分的评估将详细说明愈合过程。了解愈合过程中的关键机制对伤口研究至关重要。阐明其愈合复杂性将有助于控制和优化实现更快愈合的过程,防止伤口并发症和不良后果,如感染、伤口周围皮炎和水肿、血肿、裂开、浸渍或疤痕。伤口评估是选择适当治疗方法和评估伤口愈合过程的重要步骤。使用人工智能 (AI) 作为先进的计算机辅助方法有望深入了解伤口评估和愈合情况。由于基于 AI 的方法已在伤口护理和研究中得到广泛应用,本文概述了最近探索 AI 应用及其技术发展以及准确评估伤口和预测伤口愈合的适用性的研究。全球各地已经进行了几项研究,特别是在北美、欧洲、大洋洲和亚洲。这些研究的结果表明,基于 AI 的方法有望用于伤口评估和预测伤口愈合。但是,仍有一些限制和挑战需要解决。本文还讨论了基于 AI 的方法在伤口评估和预测伤口愈合方面的挑战和局限性。本文最后讨论了未来的研究方向,并提出了使用基于 AI 的方法进行伤口评估和预测伤口愈合的建议。
糖尿病患者的抽象伤口愈合是由于血液供应减少,周围神经病和免疫系统损害等因素而引起的复杂且经常受到损害的过程。本文旨在回顾有关激光疗法对疗法对糖尿病患者的影响的现有文献。所使用的方法包括文献综述,搜索Scielo,Lilacs和Medline等电子数据库。布尔操作员“和”用于定位研究中的研究源(DECS):康复,糖尿病,激光治疗,糖尿病脚。随机和受控的临床研究,评估了激光治疗对糖尿病患者伤口愈合的影响。审查结果表明,一致的证据表明激光治疗可能对糖尿病患者的伤口愈合有益。低强度激光刺激已显示出可促进血管生成,增加胶原蛋白合成,加速隆起并减少局部炎症。因此,激光治疗可有效减轻疼痛和改善患者的生活质量。根据审查的研究,得出的结论是,激光治疗是一种有希望的治疗方法,可以帮助糖尿病患者的康复过程。关键字:治愈;糖尿病;激光疗法。评论的结果显示糖尿病患者的抽象伤口愈合是由于血液供应减少,周围神经病和免疫系统受损的因素而引起的复杂且经常受到损害的过程。本文旨在回顾有关激光治疗对糖尿病患者愈合的影响的现有文献。使用的方法包括文献综述,并在电子数据库中进行搜索,例如Scielo,Lilacs和Medline。使用了布尔操作员”和“用于定位研究中的研究源(DECS):康复,糖尿病,激光治疗,糖尿病脚。包括糖尿病患者的激光治疗对伤口愈合作用的随机对照试验包括在内。
分化(图 4d),表明伤口生物学存在重大差异。我们对三种条件下的 10,612 个细胞进行了 scRNA-seq,这些细胞被鉴定为成纤维细胞、髓细胞、中性粒细胞、淋巴细胞和红细胞(图 5b、c)。在所有细胞类型中,成纤维细胞在各组之间的差异表达基因数量(DEG,FC > 0.5,p< 0.05)最多,这表明我们的工程化 DC 疗法对伤口床内成纤维细胞基因表达的影响最大(图 5d、e)。在成纤维细胞表达的差异表达最多的基因中,我们发现了几种已被证明与伤口愈合密切相关的基因。用 Ndrg2-KO DC 治疗的伤口中的成纤维细胞几乎只表达神经生长因子受体 Ngfr,该受体已被证明
伤口愈合是一个复杂的过程,涉及一系列连续重叠的级联事件,这些事件会响应一些外部的化学或物理刺激而发挥作用,并最终通过恢复丢失的组织而导致愈合。1 愈合过程分为四个阶段:止血、炎症、增殖和重塑。2 止血是由血小板激活引起的血凝块形成引发的,这可以防止微生物感染并促进基质组织。在增殖过程中,细胞、结缔组织、生长因子和血管生成因子会在伤口处积聚。重塑涉及细胞外基质的再合成,以维持现有细胞的死亡和新细胞的形成之间的平衡。3,4 然而,伤口恢复进度监测始终是一项重大挑战。在某些情况下,正常的愈合会变得缓慢。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2023年6月19日发布。 https://doi.org/10.1101/2023.05.08.539799 doi:Biorxiv Preprint
营养不良和特定的微量营养素缺陷是可能进一步损害糖尿病患者伤口愈合的因素。7伤口愈合是一个复杂的过程,需要足够的能量平衡,碳水化合物,蛋白质,脂肪,维生素和矿物质。8口腔营养补充剂(ONS)含有蛋白质,omega-3脂肪酸,维生素和矿物质是一种方便的格式,可帮助患者满足其营养需求。与标准配方相比,与标准配方相比,有系统的综述和荟萃分析得出的结论是,高热量,高蛋白ONS或带有精氨酸,锌和抗氧化剂的富含精氨酸,锌和抗氧化剂的饲料与改善压力溃疡(PU)的愈合有关。9鉴于DFU和PU的发病机理的相似性,10预计PU患者中看到的许多好处也适用于DFU患者。
英国邓迪大学医学院的人口健康和基因组学部门(英国邓迪大学医学院意大利帕多瓦的国家研究委员会神经科学研究所(Mari PhD);英国埃克塞特埃克塞特大学生物医学与临床科学研究所(T J McDonald PhD,A G Jones PhD); Biostat Solutions,美国医学博士Fredrick(L Li Phd,S Wang PhD);生命实验室科学,化学,生物技术与健康工程科学学院,瑞典斯德哥尔摩KTH皇家技术学院(M-G Hong PhD);研究单位分子流行病学,流行病学研究所II,德国诺伊尔伯格的Helmholtz Zentrum Muenchen(S Sharma PhD);英国牛津大学牛津大学人类遗传学信托基金中心(N R Robertson PhD,Mahajan PhD);生命实验室科学,瑞典乌普萨拉大学医学细胞生物学系,瑞典(X Wang PhD);纽卡斯尔大学纽卡斯尔大学蜂窝医学研究所,英国泰恩省(M Walker Phd教授);丹麦索伯格Novo Nordisk的全球首席医疗办公室(S HER)(高级教授);英国邓迪大学医学院的人口健康和基因组学部门(英国邓迪大学医学院意大利帕多瓦的国家研究委员会神经科学研究所(Mari PhD);英国埃克塞特埃克塞特大学生物医学与临床科学研究所(T J McDonald PhD,A G Jones PhD); Biostat Solutions,美国医学博士Fredrick(L Li Phd,S Wang PhD);生命实验室科学,化学,生物技术与健康工程科学学院,瑞典斯德哥尔摩KTH皇家技术学院(M-G Hong PhD);研究单位分子流行病学,流行病学研究所II,德国诺伊尔伯格的Helmholtz Zentrum Muenchen(S Sharma PhD);英国牛津大学牛津大学人类遗传学信托基金中心(N R Robertson PhD,Mahajan PhD);生命实验室科学,瑞典乌普萨拉大学医学细胞生物学系,瑞典(X Wang PhD);纽卡斯尔大学纽卡斯尔大学蜂窝医学研究所,英国泰恩省(M Walker Phd教授);丹麦索伯格Novo Nordisk的全球首席医疗办公室(S HER)(高级教授);
1 ASAcampus 联合实验室,ASA 研究部,实验和临床生物医学科学系“ Mario Serio ”,佛罗伦萨大学,意大利佛罗伦萨,2 荷兰实验支持中心 (DESC),阿姆斯特丹骨科中心 (ABC),阿姆斯特丹大学医学中心,VU 大学医学中心 (VUmc) 和阿姆斯特丹牙科学术中心 (ACTA),口腔颌面外科/口腔病理学系,荷兰阿姆斯特丹,3 欧洲航天局 (ESA),欧洲空间研究和技术中心 (ESTEC),TEC-MMG,荷兰诺德维克,4 转化研究实验室“压力与免疫”,慕尼黑大学医院,德国慕尼黑,5 空间技术研究与工程中心 - CREST,航空热机械服务 - ATM,布鲁塞尔自由大学,比利时布鲁塞尔