CGATATGCGAGTCGAGAATAG CTGGTCGCGATTTGCGAGTGG AGAATAGCTGGTCGCGATATG CGAGTCGAGAATAGCTAGTCG CGATATGCGAGT – GAGAATAGCTGGTCG
为了解决分布式能源 (DER) 中对意外孤岛效应的长期担忧,一个为期多年的研究项目正在进行中。该项目旨在解决逆变器连接 DER 中部署的增长、扩展的功能和新的性能选项。该项目的主要成果预计将是定义通用孤岛检测方法、在典型馈线环境中的有效性评估以及筛选互连请求的新标准。该项目以桑迪亚国家实验室最近的研究成果“混合 DER 类型的意外孤岛检测性能,SAND2018-8431”(2018 年 7 月)为基础。1 正在进行的其他工作是研究不同的孤岛检测方法、穿越性能类别和馈线细节如何影响预防。计划发布更多 EPRI 和桑迪亚报告来提供这项研究的结果。
定性归纳法因其能够生成性地发现深层且情境化的见解而广泛应用于 CSCW 和 HCI 研究,但这些本质上手动且人力资源密集型的过程通常不适用于分析大型语料库。研究人员对将定性方法应用于“大”数据问题的方法越来越感兴趣,希望从大量数据中获得更具普遍性的结果,同时保留定性方法的深度和丰富性。在本文中,我们描述了一项关于定性研究人员的工作实践及其挑战的研究,着眼于这是否是人机协作的合适领域以及成功的协作可能涉及哪些方面。我们的研究结果描述了参与者多样化的方法实践和细微的协作动态,并确定了他们可能从基于 AI 的工具中受益的领域。虽然参与者强调了定性归纳分析的混乱性和不确定性,但他们仍然希望完全掌控整个过程,并认为 AI 不应干预。我们的研究在定性分析的背景下对人机协作中任务的可委派性进行了深入研究,并为尊重偶然性、人类能动性和模糊性的人工智能辅助设计提供了方向。
能源模型扭曲可能会在不知不觉中出现,并代表不切实际和非物理的影响,从而误导最佳模型决策。一个突出的误导性影响是意外的存储循环,以前的文献中观察到这种情况,即在 18 个能源模型中的 12 个中同时对同一存储进行充电和放电。特别是对于流行的净零能源模型场景,意外的存储循环会导致严重扭曲,因此迫切需要将其消除。存在消除这种误导性影响的方法,但计算效率不高,有时无效,例如 MILP 公式。其他技术也是成功的,但前提是存在可再生能源目标约束。本文探讨了如何通过正确设置相关系统组件的可变成本来消除没有可再生能源目标约束的模型的意外存储循环。通过 124 次模拟我们发现,确定适当的可变成本水平取决于用于优化的求解器的精度。如果设置得太松,求解器会阻止消除意外的存储循环。我们进一步发现,能源建模中可变成本的可靠数据需要改进,并提供推荐的模型输入列表以及最低可变成本阈值,以显著降低意外存储循环的幅度和可能性。最后,我们的结果表明,可变成本添加剂可能会消除其他已知的意外能源循环效应,例如意外线路循环或扇区循环。
5 高阶溢出效应是指一个国家从受到共同冲击影响的邻国经济体获得的间接影响。例如,扩张性财政冲击可以对英国的净贸易产生直接的积极影响,并通过增加欧元区国家的产出产生间接影响,进而增加从英国的进口。 6 其他使用两国 VAR 研究美国货币政策国际溢出效应的论文(见 Kim,2001;Canova,2005;Nobili 和 Neri,2006)。 7 例如,见 Chen 等人(2012 年)。Georgiadis(2017 年)使用此类框架同时估计了美国货币政策冲击对大量溢出接收经济体的影响。或者,Canova 和 Ciccarelli(2013 年)建议使用贝叶斯面板 VAR 来模拟跨多个国家的溢出效应。其他应用包括考察货币政策不对称(Georgiadis,2015 年)、劳动力市场改革(Bettendorf 和 León-Ledesma,2019 年)、污染减排(Attílio、Faria 和 Rodrigues,2023 年)、增长和再分配(Attílio,2024 年)。
2023 年 5 月,盖特林将军指导成立了太空领域意识 (SDA) 工具、应用和程序 (TAP) 实验室,该实验室隶属于太空系统司令部 SSC/SZG,是太空领域意识和战斗力项目办公室。该实验室的目的是确保太空优势,认识到对我们的太空系统的巨大威胁存在于轨道和地面上。该实验室利用工业界、学术界和政府正在开发的空间技术来填补我们太空防御架构中的能力和流程空白和漏洞。萨尔兹曼将军提出了一种成功理论来保护我们的系统免受攻击,其主要原则是避免作战突袭。位于旧金山空军基地施里弗的国家太空防御中心 (NSDC) 利用来自各种来源(包括 Space Delta 2)的传感器、情报和数据来协调太空防御行动。检测杀伤链的启动对于避免作战突袭至关重要。SDA TAP 实验室的方法包括与技术人员和操作员合作,将杀伤链分解为可管理的问题陈述。这些问题陈述推动了我们的阿波罗加速器,邀请商业太空公司、大学和联邦资助的研究和开发中心 (FFRDC) 在三个月的周期内开发、协作和演示解决方案。每个周期都以演示日结束,展示各种能力以促进政府投资。第一批合作从 2023 年 10 月到 2024 年 1 月,重点是了解作战突袭的性质并制定缓解策略。 12 个来自工业界、学术界和政府的组织共同合作,提出了以下论点:突袭是通过伪装、隐瞒、欺骗和机动实现的,因此我们必须询问目标是否有 CCDM 证据,以避免突袭。这项研究将展示我们利用现有技术和非机密数据源快速完善应用程序和流程的能力,并在 100 天内将 SDA 能力部署到作战中,以弥补杀伤链中的漏洞,从而减轻作战突袭。
他们还发现了另一个不寻常的电子现象:整数量子异常霍尔在多种电子密度中的效应。分数量子异常霍尔效应被认为是在电子“液体”相中出现的,类似于水。相比之下,团队现在观察到的新状态可以解释为电子“固体”阶段 - 与电子“冰”的形成相互作用 - 当系统的电压在超低温度下仔细调谐时,该状态也可以与分数量子异常的霍尔同存。
兼捕——广泛用于指在捕捞作业中除目标物种之外意外捕获的渔获物,包括丢弃物和偶然捕获的脆弱物种——被认为是对渔业盈利能力和可持续性以及海洋环境和生态系统保护的最重要威胁之一。在地中海,对偶然捕获脆弱物种的研究仅涵盖了整个捕捞活动的一小部分。此外,在多种渔具、多个国家和/或次区域以及时间尺度上存在一些重要的知识空白,并且只有少数措施用于保护脆弱物种。监测计划和对偶然捕获的调查遵循统一的方法,允许在各次区域之间比较结果,这对于提高对这一问题的认识以及随后支持确定潜在的缓解方法和工具以及相关管理措施是必不可少的。本出版物及其所包含的方法旨在为地中海和黑海中遇到的所有脆弱物种(即板鳃类、海洋哺乳动物、海鸟、海龟和大型底栖无脊椎动物)的开发和实施高效、标准化的数据收集和监测系统提供一个框架。这是通过船上观察实现的,
现在人们已经认识到数百种不同的慢性肾脏疾病遗传原因,虽然单个原因十分罕见,但综合起来看,它们却是成人和儿童疾病的重要诱因。传统遗传学方法在很大程度上依赖于对有多名患病成员的大家族的识别,并且一直是识别遗传性肾脏疾病的基础。随着大规模并行测序的使用增加以及基因型归纳的改进,我们可以在大量无关个体中分析罕见变异,从而为患者提供个性化护理并取得重大研究进展。本综述评估了罕见病对患者护理和遗传性肾脏疾病研究的贡献,并强调了利用新技术提高我们识别新基因-疾病关联能力的关键进展。